
F
ak

u
lt

ät
 f

ü
r

In
fo

rm
at

ik
 u

n
d

 W
ir

ts
ch

af
ts

in
fo

rm
at

ik

Master-Thesis

Name:

Thema:

Tobias Wink

A decentralized communication approach for

federated learning

Arbeitsplatz:

Hochschule Karlsruhe – Technik und Wirtschaft,

Karlsruhe

Referent:

Korreferent:

Abgabetermin:

Prof. Dr. Nochta

Prof. Dr. Körner

30.09.2020

Karlsruhe, 01.04.2020

Der Vorsitzende des Prüfungsausschusses

Prof. Dr. Heiko Körner

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

3

Abstract

Artificial intelligence (AI), mostly based on machine learning (ML), has already found its way into
daily life areas. The core component of software based on ML is the model, which is often trained
with specially prepared data. A clear trend can be seen that models are becoming more and more
complex so that both more training data and more computing capacity are needed for successful
training. This dilemma is to be compensated by distributed learning. Distributed learning enables the
distribution of the necessary computations, the so-called training, within a data center. This requires
that the training data is available at a central location for training, becoming increasingly difficult
due to stricter data protection laws, such as the General Data Protection Regulation (GDPR).

For this reason, the field of federated learning has emerged, in which Google is pathbreaking with a
technique called federated optimization (FO). This way, training data no longer has to be collected
centrally but can remain on the training devices. For FO, the training devices send the training
results to a central server that combines the received results into an overall model. A disadvantage
of the previous federated learning approaches is that they require a central server to generate the
overall model. That implies the central server operator can access all transmitted training results
and thus gain advantages. Thereby possible usage scenarios are limited. Companies would not get
involved in developing a common model if one could gain advantages through server operation
hidden from the others. However, the jointly developed model could be better than that of a single
party.

This thesis shows an approach for developing a common model without a central server to expand
the application possibilities of federated learning. For this purpose, the necessary basics are first
taught. Subsequently, the current approaches for distributed and federated learning will be discussed
to develop approaches without a central server. Experiments will be used to show how well the
approaches developed in this way work.

4

Kurzfassung

Künstliche Intelligenz, insbesondere auf Basis von maschinellem Lernen, hat bereits in immer mehr
Bereichen des täglichen Lebens Einzug gehalten. Die Kernkomponente einer Software, die auf
maschinellem Lernen basiert, ist das sogenannte Modell, welches oftmals mit Hilfe von speziell
aufbereiteten Daten trainiert wird. Es ist ein klarer Trend zu erkennen, der die Modelle immer
komplexer werden lässt, sodass sowohl mehr Trainingsdaten als auch mehr Rechenkapazität für
das erfolgreiche Training benötigt werden. Dies soll durch verteiltes Lernen kompensiert werden.
Dadurch wird es möglich, die notwendigen Berechnungen, das sogenannte Training, innerhalb eines
Rechenzentrums zu verteilen. Beim verteilten Lernen ist es erforderlich, dass die Trainingsdaten an
einem zentralen Ort für das Training bereitliegen, was durch strenger werdende Datenschutzgesetze,
wie der Datenschutzgrundverordnung (DSGVO), immer schwieriger wird.

Aus diesem Grund ist der Bereich des föderierten Lernens entstanden, in welchem Google mit
einer Technik namens föderierte Optimierung federführend ist. So müssen die Trainingsdaten nicht
mehr zentral gesammelt werden, sondern können auf den trainierenden Geräten verbleiben. Bei
föderierter Optimierung werden die Trainingsergebnisse an einen zentralen Server gesendet, der die
erhaltenen Daten zu einem Gesamtmodell zusammenfasst.

Ein Nachteil bei den bisherigen Ansätzen föderierten Lernens ist, dass sie einen zentralen Server
für die Erzeugung des Gesamtmodells benötigen. Dies impliziert, dass der Betreiber des zentralen
Servers Zugriff auf alle übermittelten Trainingsergebnisse erhalten und sich so Vorteile verschaffen
kann. Hierdurch werden mögliche Einsatzszenarien eingeschränkt, da bspw. Konkurrenten sich
nicht auf die Entwicklung eines gemeinsamen Modells einlassen würden, wenn sich ein Wettbe-
werber durch den Serverbetrieb Vorteile verschaffen kann, die den anderen verborgen bleiben,
obwohl das gemeinsam entwickelte Modell besser werden könnte als das eines Einzelnen. Um
die Einsatzmöglichkeiten föderierten Lernens zu erweitern, wird in dieser Arbeit gezeigt, dass
die Entwicklung eines gemeinsamen Modells ohne zentralen Server möglich ist. Dafür werden
zuerst die notwendigen Grundlagen vermittelt. Anschließend werden die aktuellen Ansätze für
verteiltes und föderiertes Lernen beleuchtet, um darauf aufbauend Ansätze zu entwickeln, die ohne
zentralen Server auskommen. Wie gut die so entwickelten Ansätze funktionieren, wird mit Hilfe
von Experimenten gezeigt.

5

Acknowledgement

I wish to thank all the people whose assistance was a milestone in the completion of this project.

I want to thank my thesis advisor Professor Zoltan Nochta of the Faculty of Computer Science and
Business Information Systems at Karlsruhe University of Applied Science. The “door” to Professor
Nochta‘s office was always open whenever I ran into a trouble spot or had a question about my
research or writing. He consistently allowed this thesis to be my own work but steered me in the
right direction whenever he thought I needed it.

Furthermore I would like to thank all proofreaders. Without you, this work would probably only
be half as understandable. I would especially like to thank Stefan and Steffen for their time and
support.

Finally, I must express my very profound gratitude to my wife, Andrea, for providing me with
unfailing support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have been possible
without her. Thank you.

7

Contents

1 Introduction 13
1.1 Structure . 14

2 Basics 15
2.1 Artificial intelligence and machine learning . 15
2.2 Secure multi-party computation . 27

3 Related Work 35
3.1 Distributed machine learning . 35
3.2 Split learning . 39
3.3 Federated optimization . 41

4 Analysis & Design 43
4.1 Decentralized communication approach for split learning 43
4.2 Decentralized communication approach for federated optimization 46

5 Implementation 51

6 Experiments 55
6.1 Experiments on MNIST . 56
6.2 Experiments on CIFAR-10 . 63
6.3 Experiments on Imagenette . 69

7 Conclusion and Outlook 75

Bibliography 77

A Further experiments on MNIST 93
A.1 Experiment M3: non-IID (3%) . 93
A.2 Experiment M4: non-IID (1%) . 94

B Python implementations 95
B.1 Source code of the experiments . 95
B.2 Python implementation of secure decentralized federated optimization (SecAvg) . 111

9

Acronyms

2PC secure two-party computation. 27

AI artificial intelligence. 4, 13

ConvBlock convolutional block. 71

DL deep learning. 15

DNN deep neural network. 20

FO federated optimization. 4, 13

GAMIN Generative Adversarial Model INversion. 45

GDPR General Data Protection Regulation. 4, 13

GPU graphics processing unit. 15

HDF5 Hierarchical Data Format version 5. 51

IdBlock identity block. 71

IID identically and independently distributed. 9, 36

ML machine learning. 4, 13

MPC secure multi-party computation. 27

SGD stochastic gradient descent. 20

SL split learning. 39

11

1 Introduction

“As a technologist, I see how AI and the fourth industrial revolution will impact every
aspect of people’s lives.” (Fei-Fei Li [62])

Artificial intelligence (AI), mostly based on machine learning (ML), has already found its way into
daily life areas, e. g. autonomic parking, intelligent personal assistants, or word completion on
smartphone keyboards, to name a few. The central core of ML-based software is called the model.

To create such a model, or more precisely to train it, often specially prepared data is required.
Initially, and still widely used today, this data was or is stored in a central location. This is the reason
why this procedure is called centralized learning. A clear trend can be seen that models are becoming
more and more complex so that both more training data and more computing capacity are needed
for successful training. This dilemma is to be compensated by distributed learning. Distributed
learning enables the distribution of the necessary computations, the so-called training, within a
data center. Therefor the training data must be available at a central location. This is becoming
increasingly difficult due to stricter data protection laws, such as the General Data Protection
Regulation (GDPR).

For this reason, an area called federated learning has been developed in which Google is pathbreaking
with a technique called federated optimization (FO) [69]. Federated optimization (FO) allows a
model‘s training without transferring the training data to a central location. An existing model is
trained locally with the local data, and it is sent afterward to a central server, where all received
models are then reintegrated into an overall model. This technique is used for example to improve
mobile keyboard prediction by Google [58, 89, 109] and Apple [47].

Current techniques for federated learning are designed to give one party an advantage, namely
the party with the central location under its care. The central location is where all training results
converge and are processed further. What if several parties want to develop a common application
model without giving one party the named advantage? For example, some banks want to develop
a model for credit card fraud detection. Often better results can be achieved with more data [37].
Therefore, said parties could develop a better model if they would cooperate for the training. No
company is willing to share its data, especially not its user data, particularly not with competitors.
As Ginni Rometti states

“I want you to think about data as the next natural resource.” ([93])

In this scenario, the current techniques for federated learning are not sufficient. Competitors do not
want one party to have an advantage in cooperation. Therefore, an approach is needed here which
prevents such an advantage by making the central location unnecessary and does not disclose any
data. This thesis aims to demonstrate such a solution. It will be shown how federated learning is
possible without sharing training data and without the need to operate a central infrastructure. It
will also be shown how federated learning is possible with a decentralized communication approach
while preserving privacy.

13

1 Introduction

1.1 Structure

Chapter 2 covers some basics which are then used throughout this thesis.

In Chapter 3, related work is described.

Starting with Chapter 4, the author’s contribution to this field of research begins. This chapter deals
with the analyses of existing approaches and the design of practical solutions.

Chapter 5 gives an overview of the realization of a prototype and highlights technically exciting
approaches.

Chapter 6 shows how the selected approaches prove themselves in different scenarios.

In Chapter 7, a conclusion is drawn.

14

2 Basics

For a complete understanding of this thesis‘s contents, knowledge in the fields of AI, more precisely
ML, especially deep learning (DL), and cryptography, more precisely secure computation, is
required.

2.1 Artificial intelligence and machine learning

Artificial
intelligence

Deep
learning

Machine
learning

Figure 2.1: Connection between Artificial
intelligence, machine learning
and deep learning [29]

John McCarthy coined the term artificial intelligence
(AI) as part of a proposal for a research project in
1955 [78]. In general, AI describes “the effort to
automate intellectual tasks normally performed by
humans” [29]. Therefore, the field of AI is vast. In
the first 30 years, the focus was on systems for spe-
cific areas, in which the developers tried to make
all necessary decisions through explicit rules, the
so-called expert systems. Apart from the first chess
computers, ELIZA [108] is probably one of the best-
known expert systems representatives. ELIZA is a
therapist-inspired natural language processing com-
puter program developed by Joseph Weizenbaum in
the mid-1960s. It attempts to maintain a conversa-
tion with the user by searching for the most critical
keywords in the message and generating either statements or questions from them.

In addition to expert systems, there is also the broad area of machine learning (ML). The foundations
of ML were laid early on, as will be shown in the following sections. Since the creation of ML
systems, the so-called training, requires a relatively large amount of computing power and input
data, it has been neglected for decades. Due to the widespread use of the internet and the associated
progressive digitization, ever-larger amounts of data is available. Due to the significant advances
in processors‘ computing power, especially graphics processing units (GPUs), the focus has now
shifted towards ML, especially DL. To better understand the relationship between AI, ML, and DL,
this is shown graphically in Figure 2.1. This change of focus has led to specific hardware, tools,
and frameworks in this area. While computer games were almost exclusively responsible for GPUs‘
rapid development from the beginning, there are now separate graphic card series that are specially
designed for use in the ML context, such as the NVIDIA A1001.

1https://www.nvidia.com/de-de/data-center/a100/

15

https://www.nvidia.com/de-de/data-center/a100/

2 Basics

2.1.1 A brief overview of machine learning

The term machine learning (ML) was coined by Arthur L. Samuel 1959 [97], often quoted with
“Field of study that gives computers the ability to learn without being explicitly programmed.” [4,
14], which is probably the interpretation of “Programming computers to learn from experience
should eventually eliminate the need for much of this detailed programming effort.” [97].

Samuel developed a computer program for the game checkers [97]. The next move is chosen with
the help of a scoring function, which estimates the chances of winning based on the current game
state. The program used the current game state and also all past game states so that the program
was able to “learn”.

Around the same time, Frank Rosenblatt developed the perceptron [94], a simplified model of a
biological neuron, as described by Warren McCulloch and Walter Pitts [79]. This perceptron can
work as a linear binary classifier. For correct classification, the perceptron can be trained using data
for which the correct classes are already known. For more details, see Section 2.1.3.

Between 1956 and 1967, the K-means algorithm was developed independently by Steinhaus
(1956) [101], Lloyd (proposed in 1957 but published in 1982) [73], Forgy (1965) [46], and Mac-
Queen (1967) [75]. K-means is an algorithm for cluster analysis, which can be defined as follows:
“a statistical classification technique for discovering whether the individuals of a population fall
into different groups by making quantitative comparisons of multiple characteristics” [83]

These three examples are all examples of ML since, in all three cases, knowledge is derived from
the data by algorithms. However, the procedure for these three examples is different in each case
because each example represents a different category of ML. At the top level, a distinction is made
between the following ML categories:

Reinforcement learning An agent interacts with the world and learns with rewards. His goal is
to maximize the reward or to minimize the punishment, e. g. Samuels
checker program.

Supervised learning An algorithm (5\) learns a mapping from data (G) to the corresponding
answer (H): 5\ (G) = H, e. g. Perceptron.

Unsupervised learning Unsupervised learning aims to find knowledge in the form of structure
in data, e. g. K-means.

Since the currently known algorithms for federated learning are related to supervised learning, this
thesis will focus on that area.

Supervised learning

Besides the previously abstract mathematical definition of supervised learning, it is perhaps more
accessible to compare it with classical software development. In classical software development,
the developer of a program defines rules that convert a particular input into a particular output.
With supervised learning, such rules are unknown in the beginning. They are derived during the
training phase from the inputs (training data) and the corresponding desired outputs (label) in a

16

2.1 Artificial intelligence and machine learning

model. This trained model is then used in later applications to convert unknown inputs into outputs.
It is essential to ensure the resulting outputs meet the expectations that the used training data is as
representative as possible for the selected problem.

Over time, various types of algorithms have been developed in the field of supervised learning, such
as support vector machines [19], decision trees [24], or artificial neural networks [79], to name a
few.

Typical application scenarios for supervised learning are:

Classification To which predefined class does an object correspond, e. g. is this a picture
of a cat or dog?

Regression What is the next continuous value (Prediction), e. g. temperature forecast.

The algorithm created in the context of supervised learning is called model. The process of creating
or learning is generally referred to as training. Three things are needed to train a model:

1. Input data

2. Expected output

3. A weighting function to determine how well the algorithm has achieved the expected results,
the so-called loss. In practice, the loss will be measured and an optimizer changes the model‘s
parameters to minimize the loss. The loss function and the optimizer depend on the specific
task.

Input data, in conjunction with the expected output, is called annotated data. The result of the
weighting function is used as a feedback signal to adjust the model so that future results better match
the expected results. This process is called training.

2.1.2 Tensor

Tensors are the most basic data structure in the context of ML. F. Chollet describes them as: “At
its core, a tensor is a container for data—almost always numerical data. So it’s a container for
numbers. [. . .] tensors are a generalization of matrices to an arbitrary number of dimensions
[. . .].” [29].

Three key attributes define a tensor:

The number of dimensions Alternatively: Number of axes. For instance, a vector (1D tensor) has
one axis, a matrix (2D tensor) has two axes, and a scalar corresponds
to a 0D tensor.

Shape This integer tuple describes the number of values per axis, e. g. a
3G3-Matrix has shape (3, 3).

Data type This specifies the data type of the contained data. For the MNIST
dataset (see Section 6.1.1), float32 will encode each pixel‘s gray
value.

17

2 Basics

To get a more vivid idea of tensors, here are some typical examples from ML for input data [29]:

Scalar data 1D tensor

Vector data 2D tensors of shape (samples, features)

Timeseries data 3D tensors of shape (samples, timesteps, features)

Images 4D tensors of shape (samples, height, width, channels) or (samples, channels,
height, width)

Video 5D tensors of shape (samples, frames, height, width, channels) or (samples,
frames, channels, height, width)

2.1.3 Artificial neural networks and deep learning

Artificial neural networks consist of artificial neurons that are interconnected as in a network. They
describe a family of algorithms for supervised learning and can accordingly be used for classification
and regression. The idea for artificial neural networks came up in 1943 and can be traced back to
Warren McCulloch and Walter Pitts [79].

Perceptron

x0

Input

…

w0i

w1i
w2i

wni

Σ f(y)

x1

x2

xn

Weights Activation function

Output

Perceptron i

s

Figure 2.2: Schematic representation of a
perceptron

As already mentioned, in 1958, Frank Rosenblatt
developed a simplified model of a biological neuron
as a linear binary classifier, which he called percep-
tron [94]. Figure 2.2 shows a perceptron as a graph.
The output B of a perceptron 8 is the dot product of
the input vector ®G, and a weighting vector ®F8 applied
to an activation function 5 (H). The formula is as
follows:

B = 5 (®G • ®F8) = 5 (®G) ®F8) = 5 (Σ=8=0G8F8)

Often G0 is fixed 1 to shift the dot product‘s result
into the correct range using F0. Then F0 is also
known as bias. In this case, one also refers to a
biased perceptron. In practice, the fixed value 1 is

not placed in front of the input vector ®G; instead F0, the bias, is added at the end so that the formula
used is the following:

B = 5 (®G) ®F8) + F0

To differentiate between bias and other weights, from now on, F0 is referred to as bias and the other
weights as kernel weights, a notation which is typical for TensorFlow and Keras (Section 2.1.6).

18

2.1 Artificial intelligence and machine learning

Algorithm 2.1 Train a perceptron
Input:

Training set (= (G1, B1), . . . , (G=, B=), with G8 as input vector and B8 as desired result
Learning rate A between 0 and 1
An initialized ®F with random values between 0 and 1

function fit((, A)
for all (G 9 , B 9) ∈ (do

H = 5 (F • G) // Calculate result
for all F8 ∈ ®F do

F8 = F8 + A · (B 9 − H)G 9 // Adjust the weighting to approximate the desired result
end for

end for
end function

−2 −1 1 2

1

G

H

Figure 2.3: Step function

The task of the activation function is to separate two classes.
The most basic activation function is a step function, as shown
in Figure 2.3, which returns 0 for negative input values and 1
for positive input values. So if the output of a perceptron is 1,
a value belongs in class 1, otherwise in class 2.

For the perceptron to classify correctly, it must calculate the
correct classes from the input data. In order for this to work,
the weights must have the correct values. The correct values
can also be determined manually for simple examples, but
in most cases, this is trained using annotated data, as shown
in Algorithm 2.1. The learning rate A shown there limits the
progress per execution step so that possible minima are not skipped.

Neural networks

A single perceptron, as a linear classifier, is incapable of classifying non-linear problems. For the
classification of non-linear problems, a non-linear classifier is therefore required. Such a classifier
can be constructed by using several perceptrons and dividing them at least into two layers, as shown
on the left in Figure 2.4. Now, non-linear functions are required as activation functions of the
first layer to turn it into a non-linear classifier. Such a construction is also known as a multi-layer
perceptron. If a layer has no connection to the input or output values, this layer is called a hidden
layer, see Figure 2.4.

If a hidden layer is present, a new way to train the weights is needed. The backpropagation algorithm
provides a solution. The term backpropagation and its use in neural networks were published in
1986 [96]. A prerequisite for this algorithm is the existence of a loss function. As mentioned before,
a loss function‘s task is to measure a model‘s failure, e. g. the number of misclassified inputs.
Backpropagation is a way to compute the gradients of the weights of all layers regarding the loss
and consists of two phases:

19

2 Basics

1. Forward Pass Computation of the loss function values, for example, by comparing the
determined classes with the desired classes.

2. Backward Pass Computation of the gradients‘ values of the different weights with subsequent
optimization by using a gradient descent algorithm.

The loss function used depends on the problem definition or the architecture, e. g. for binary
classification, binary cross-entropy is used. For regression, mean squared error is used.

The algorithm used for the gradient descent is called optimizer function or just optimizer. The
optimizer‘s typical algorithm is stochastic gradient descent (SGD), a stochastic approximation of
gradient descent. In the meantime, other optimization functions appeared, often based on the SGD,
e. g. AdaGrad, RMSProp, or Adam.

Input
layer

Hidden
layer

Output
layer

Multi-layer perceptron

Input
layer Output

layer

Multiple hidden layers

Deep neural network

…

Figure 2.4: A multi-layer perceptron in comparison to a deep neural network, inspired by [107]

Neural networks with one hidden layer can solve all classification problems, as initially proved
by Kolmogorov in 1957 [66] and transferred to neural networks by Hecht-Nielsen in 1987 [61].
Nevertheless, approaches using several hidden layers have become more and more popular in the
last decade. A possible explanation for this is provided by [6]. There it states: “The results suggest
that the strength of deep learning may arise in part from a good match between deep architectures
and current training procedures, and that it may be possible to devise better learning algorithms to
train more accurate shallow feed-forward nets. For a given number of parameters, depth may make
learning easier, but may not always be essential.” [6]

There are different other reasons why deep neural network (DNN) usually produces better results,
but among the probably most important are certainly:

• With each additional hidden layer, the number of optimization tasks increases, but each such
optimization task‘s complexity is less than one hidden layer and the same total number of
perceptrons.

The downside is that the learning cycle (feed-forward and backpropagation) will be extended by
each additional layer because, in each layer, the dot product (feed-forward) and the associated
gradients (backpropagation) must be calculated.

Here is an example: A network with 1200 perceptrons in a hidden layer must find an optimized
weight vector ®F ∈ R1200 during optimization.

20

2.1 Artificial intelligence and machine learning

If the 1200 perceptrons are divided into three hidden layers in the ratio 600 : 400 : 200, the
optimization task has to find three optimized weight vectors ®Fℎ1 ∈ R600, ®Fℎ2 ∈ R400, and
®Fℎ3 ∈ R200.

• Particular types of layers can be used for specific tasks. So a model can deliver better
results despite less training. For example, there are so-called convolutional layers for image
recognition, which allow a network to recognize shapes independent of their current position,
see Section 2.1.5.

Since their first major success in the ImageNet 2012 competition, these so-called DNNs have
developed into a separate sub-field of ML deep learning (DL). Figure 2.4 shows a comparison
between a multi-layer perceptron or a classical neural network and a DNN.

Nevertheless, DNNs do not only have advantages. For example, there is the vanishing gradient
problem, which can cause early layers to learn significantly slower than later layers. The problem
occurs when the chain rule is used in the gradient calculation, and an activation function is used
whose derivatives have values between 0 and 1. By using the chain rule, the respective gradients have
a multiplicative connection to the subsequent layers. This, combined with small values derived by the
activation function, results in smaller and smaller gradients. The problem can be mitigated by using
other activation functions or by using alternative model architectures in which the interconnection
of the layers is not strictly left-to-right, such as in recurrent neural networks or residual neural
networks.

2.1.4 Activation functions

As already mentioned in Section 2.1.3, activation functions are executed after the actual link
operation, e. g. for a perceptron, the computation of the dot product. Typically, non-linear functions
are used to increase the overall system‘s expressiveness, in this case, ReLU and softmax.

ReLU

−2 −1 1 2

1

2

G

H

Figure 2.5: ReLU function

ReLU stands for rectified linear unit. It leaves all positive values
unchanged and converts all negative values to 0. Figure 2.5
shows a plot of the ReLU function. The corresponding formula
is:

relu(G) =
{

0, for G < 0
G, for G ≥ 0

The corresponding gradient is:

relu′(G) =
{

0, for G < 0
1, for G ≥ 0

Since the gradient for positive numbers is constant 1, the vanishing gradient problem has a much
weaker effect. This property might be one reason for the incredible popularity of this activation
function.

21

2 Basics

Softmax

The softmax function is a function to normalize a vector into a probability distribution. This
means that all elements of the result lie in the interval [0, 1], and the sum of all elements is 1. The
corresponding formula is:

softmax(®G) = exp(G8)∑
:=1 exp(G:)

for 8 = 1, . . . , and ®G = (G1, . . . , G) ∈ R

It is typically used as an activation function in the last layer for classification problems with more
than two classes.

2.1.5 Layers

This section provides a brief overview of the layers used in the models for the experiments in
Chapter 6.

Dense layer

A dense layer or fully connected layer corresponds to the already introduced biased perceptron
(see Section 2.1.3). Therefore the result can be expressed with the following formula:

>DC?DC = 02C8E0C8>=((−−−−→8=?DC • −−−−−−−−−−−−−−→:4A=4; F486ℎCB) + 180B)

Typically, the following parameters are specified:

Units The dimensionality of the output tensor.

Activation The used activation function.

Convolutional layer2

Convolutional layers were introduced by LeCun in 1989 [72]. The name convolution already
indicates the essential property of the layer, the mathematical operation convolution. Goodfellow
sums it up in his book Deep Learning:

“Convolutional networks are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their layers.” [55]

A convolution (is generally specified as:

((G) = (� ∗) (G) =
∫

� (g) (G − g)3g

2The main reference for this part is [55].

22

2.1 Artificial intelligence and machine learning

In ML cases, the discrete convolution is sufficient, which can be defined as:

((G) = (� ∗) (G) =
∞∑

g=−∞
� (g) (G − g)

In convolutional layer terminology, the first argument � is often referred to as input and the second
argument as the kernel. The output is often referred to as the feature map.

In ML applications, especially in image recognition, one usually has to deal with multidimensional
arrays of data, and the kernel is often multidimensional as well. Therefore the infinite summation
can be implemented as a summation over a finite number of array elements.

For example, a two-dimensional image � could be used as input, and the kernel could also be
two-dimensional:

((8, 9) = (� ∗) (8, 9) =
∑
<

∑
=

� (<, =) (8 − <, 9 − =)

Many ML libraries, including Keras, implement a related function, the cross-correlation, but call it
convolution:

((8, 9) = (∗ �) (8, 9) =
∑
<

∑
=

� (8 + <, 9 + =) (<, =)

Goodfellow writes about this:

“In the context of machine learning, the learning algorithm will learn the appropriate values of
the kernel in the appropriate place, so an algorithm based on convolution with kernel flipping will
learn a kernel that is flipped relative to the kernel learned by an algorithm without the flipping.
It is also rare for convolution to be used alone in machine learning; instead convolution is used
simultaneously with other functions, and the combination of these functions does not commute
regardless of whether the convolution operation flips its kernel or not.” [55]

Convolutional layers offer three essential properties that can lead to better learning results:

• Sparse weights

• Parameter sharing

• Equivariant representations

Sparse weights describe that in a convolutional layer, the kernel is much smaller than the input. In
a dense layer, each output unit = interacts with every input unit, but in a convolutional layer, the
output units = only interact with the kernel : . Therefore the sparsely connected approach requires
only : × = parameters and O(: × =) runtime. In practice, kernels of the size (5, 5) and (3, 3) are
the most common.

In a dense layer, each weight is used precisely once while computing the output of a layer. In a
convolutional layer, the kernel is used at every position of the input. Thereby, the model‘s storage
requirements are reduced to |: |, where : is the kernel.

23

2 Basics

This particular form of parameter sharing causes the layer to have a property called equivariance to
translation. This means that if the input changes, the output changes in the same way. For this reason,
it is possible for these layers to recognize objects or shapes, for example, in images, regardless of
their position.

186 166 87 176

163 87 163 242

84 166 242 204

161 235 196 145

* =
5

0 77

79 19

17 -45

-0.5*186+0*166+0.5*87

Input Convolution result

-49

0.5 0 -0.5

Kernel

Figure 2.6: An example of a convolution.

The convolution operation in images can also be described visually. The kernel represents a window,
which is horizontally mirrored gradually placed over the entire image. A weighted sum is formed
at each position by multiplying the image‘s superimposed fields and the kernel and adding up all
the multiplication results. All weighted totals determined in this way then result in the output.
Figure 2.6 shows an example of a convolution. The output was restricted to only positions where the
kernel lies entirely within the image, called “valid” padding. Another variant of padding is “same”,
where the borders are filled with 0.

In practice, convolutional layers detect not only one convolution but several, the so-called filters.
The name comes from the fact that convolutions are used in computer vision, for example, for
smoothing filters.

Typically, the following parameters are specified:

Filters The number of (output) filters.

Kernel size A tuple to specify the dimensionality for the convolution window, e. g. (3, 3) to use a
window of width 3 and height 3 for an image.

Padding How to proceed with the edges of the input?

Step size By how many pixels should the kernel be moved after each convolution?

24

2.1 Artificial intelligence and machine learning

Pooling layer

5

0 77

79 19

17 -45

Input Result

-49

77

79

max-pooling(2, 2)

max(79, 19, 17, -45)

max(-49, 5, 0, 77)

Figure 2.7: An example of max–pooling with a
pool size of (2, 2).

The task of a pooling operation is to down-
sample the input data. Extraction windows in
the size of the specified pool size are superim-
posed on the input data and combined to one
input value each. The used aggregation func-
tion depends on the specific characteristics of
the pooling layer. Typical examples of pool-
ing layers are MaxPooling, MinPooling, and
AvgPooling, where the maximum, minimum,
or average of the extraction window values
are determined and applied. Pooling enables
downstreamed convolutional layers to recognize
area-wide or spatial structures. An example
of a max–pooling operation is shown in Fig-
ure 2.7.

Dropout layer

Dropout layers can help to prevent overfitting.
Overfitting in this context means that a model
becomes too much adjusted to the training data through repeated training. Therefore, the Dropout
layer randomly sets input values to 0, and the A0C4 parameter determines the probability of an input
value being set to 0. To avoid changing the total sum of input values, all values that are not changed
are upscaled by 1/(1 − A0C4).

Batch Normalization layer

Batch normalization [64] is a technique to improve the learning speed by stabilizing the learning
process. During backpropagation, the weights of all layers are updated, leading to unwanted effects,
e. g. the accuracy is much lower than before the update. Through batch normalization, the inputs
are so transformed that the output‘s mean value is close to 0, and the standard deviation is close to
1. Thus, the layers before and after the batch normalization layer are more decoupled.

25

2 Basics

2.1.6 TensorFlow

TensorFlow is an open-source library for ML. It was first developed by the Google Brain team and
released in November 2015 under the Apache License 2.0. TensorFlow provides stable APIs for
Python and C to develop ML applications. The execution is done via high-performance C++. If an
NVIDIA GPU is present, that can be utilized via CUDA. For use with AMD GPUs, there are also
first experimental versions based on the ROCm3 platform.

GPU CPU

CUDA / cuDNN BLAS, Eigen

TensorFlow / Theano / CNTK / …

Keras

Figure 2.8: Keras software and hardware
stack [29].

TensorFlow computations are expressed as stateful
dataflow graphs. Each node in the graph represents
a mathematical operation, and each connection or
edge between nodes is a tensor.

Keras

Keras is an open-source library for DL written in
Python. It was first developed by François Chollet
and released in March 2015 under the MIT license.
With Tensorflow 2.0, Keras was integrated into Ten-
sorflow to no longer need to be installed separately.
It contains numerous implementations of commonly
used neural-network building blocks such as layers,

activation functions, and optimizers. One focus of Keras is on user-friendliness. Another focus of
Keras is that it can use different libraries as backend, see Figure 2.8. It offers three separate APIs:

Sequential API Focus on user-friendliness but restricted to a linear stack of layers and pre-
cisely one input and exactly one output.

Functional API Less user-friendly but no limitation in linking the layers or in the number of
inputs and outputs.

Model subclassing Fully-customizable to enable the implementation of custom forward-pass
models. Model subclassing is mainly intended for research.

The central element in Keras is an instance of the class tf.keras.Model, which groups layers with
training and inference functionalities. Such an instance is created with the help of one of the APIs
and then configured with optimizer, loss function, and desired training metrics. Due to the structure
of tf.keras.Model it is not possible to access the weights directly; instead, they are accessible via
the respective layers. This characteristic becomes relevant in Chapter 5.

3ROCm is an open software platform from AMD for high performance computing and ML. URL: https://www.amd.
com/en/graphics/servers-solutions-rocm

26

https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.amd.com/en/graphics/servers-solutions-rocm

2.2 Secure multi-party computation

2.2 Secure multi-party computation

Previous approaches to federated learning require a central server. This is to be changed by this work.
Without such a server, the tasks have to be implemented differently. Good alternatives are protocols
of the secure multi-party computation (MPC) field. The MPC goal is to enable a group to perform
joint computations without each group member‘s data becoming known to the others. It is a subfield
of cryptography. In contrast to the traditional cryptography tasks, where the adversaries come from
outside, it is important to protect the individual members‘ data from the other participants.

Secure computation goes back to Andrew Yao [110], who presented the so-called Millionaire’s
Problem and its solution in 1982. The problem describes two millionaires who want to know which
of them is richer without getting more information about the other’s wealth. Since two parties are
involved, it is called secure two-party computation (2PC). A distinction is often made between 2PC
and MPC, because sometimes more efficient protocols can be used for communication between two
parties than if there are more parties involved.

A secure computation or secure function evaluation are alternative terms, whereby the definitions
in some cases drift apart. Micali and Rogaway [84] designate the original ideas and concepts on
this topic and define secure function evaluation to eliminate difficulties they had with the original
definition of secure computation. In contrast, Beerliová-Trubíniová et al. [10] with MPC mean the
generalization of secure function evaluation, which can also store intermediate results. In this thesis,
all three terms are used equally.

There are a few basic methods with which MPC protocols are implemented. Sometimes they are
combined: Secret sharing, oblivious transfer, garbled circuits, fully homomorphic encryption, and
functional encryption. These methods are briefly described below. Subsequently, security models
are introduced that can be used to categorize the behavior of adversaries. Finally, the Real World/
Ideal World paradigm explains a procedure for testing MPC protocols‘ security.

2.2.1 Secret sharing

Secret sharing schemes refer to methods for distributing a secret among several parties. The basic
idea is to share a secret B among = parties in such a way that only the combination of a sufficiently
large number of : parts together can reconstruct the secret. Secret sharing is a primitive that
forms the core of many cryptographic protocols, especially in MPC protocols. It was invented
independently by Adi Shamir [98] and George Blakley [16] in 1979.

Depending on the value of the threshold : , there are three families of secret sharing schemes:

: = 1 The trivial case, since the secret can easily be distributed to all = parties. It is also
called a shared secret.

: = = The so-called k-out-of-k secret sharing scheme, where all parts are needed to reconstruct
the secret. An example of this is additive secret sharing.

1 < : ≤ = In this case, the secret is divided into = parts, but already : parts are sufficient to
reconstruct the secret. An example of this is Shamir’s secret sharing [98].

27

2 Basics

In 1985 Chor et al. [30] introduced the concept of verifiable secret sharing. “The property of
verifiability means that shareholders are able to verify that their shares are consistent.”[59] This
enables all parties to check that they have received correct shares. This is ensured by commitment
procedures [23].

Two well-known schemes are discussed below.

Additive secret sharing

Additive secret sharing [76] is probably the simplest secret sharing scheme. It is an example of the
k-out-of-k secret sharing scheme. To split a secret B into = shares = − 1 field elements B1, . . . , B=−1
are chosen randomly and B= is defined as B= = B −

∑=−1
8=1 B8 . Each party then gets one of these shares.

To reconstruct the secret, all shares are summed up.

Shamir‘s secret sharing

Shamir’s secret sharing [98] is one of the first secret sharing schemes. It belongs to the so-called
(:, =) threshold schemes, where 1 < : ≤ = applies. This means that only : of = shares are needed
to reconstruct the secret B. The construction of the shares consists of two parts:

1. Construction of the polynomial 5 (G) = B + 01G + 02G
2 + . . . + 0:−1G

:−1, where the values for
all coefficients 01, . . . , 0:−1 are chosen randomly.

2. Generation of = value pairs (G8 , B8 = 5 (G8)), for 8 = 1, . . . , =, the values of all G8 are chosen
randomly and differently with the restriction G ≠ 0. The value pairs are afterward distributed
to the parties involved. The values for G8 are public while the B8, the shares, should be kept
secret.

One needs : value pairs to determine the polynomial 5 (G) uniquely, so up to : − 1 partial secrets
can be compromised without endangering the secret. The original scheme was based on the finite
field F of size ?, where ? is a prime number, and ? is bigger than both B and =. The coefficients
01, . . . , 0:−1 are randomly chosen over the integers in [0, ?) and the values B1, . . . , B= are
computed modulo ?.

2.2.2 Oblivious transfer

“Oblivious Transfer (OT) is a cryptographic primitive defined as follows: in its simplest flavour,
1-out-of-2 OT, a sender has two input messages "0 and "1 and a receiver has a choice bit 2. At
the end of the protocol the receiver is supposed to learn the message "2 and nothing else, while the
sender is supposed to learn nothing.” [32]

The concept of oblivious transfer was presented in 1983 by Even et al. as a protocol for signing
contracts [43]. [25, 32, 85] use oblivious transfer to implement efficient 2PC and MPC protocols.
According to [65] it is even possible to implement all cryptographic tasks with it.

28

2.2 Secure multi-party computation

The protocol in Figure 2.10 [32] serves as an example of an 1-out-of-2 oblivious transfer protocol.
Interestingly, the protocol is based on the Diffie-Hellmann key exchange [36] (Figure 2.9), even
though this comes from a different cryptography field. Although the Diffie-Hellmann key exchange
is widely known, it will now be discussed first, to emphasize the steps needed to transform it into an
OT protocol. In general, both protocols require a group G and a generator 6. The key exchange
occurs as follows: Alice takes a random sample 0, computes � = 60 and sends the result to Bob.
Bob does the same and also takes a random sample 1, computes � = 61 and sends � to Alice. Both
are now able to calculate 601 = (60)1 = (61)0, from which they can both derive the key : .

Alice Bob
Input: (") Input: none

Output: none Output: "

0 ← Z? 1 ← Z?
�=60

−−−−−−−−−−−−→
�=61

←−−−−−−−−−−−−
: = � (�0) : = � (�1)

4←�: (")−−−−−−−−−−−−→
" = �: (4)

Figure 2.9: Diffie-Hellmann Key Exchange

“The key observation is now that Alice can also derive a different key from the value (�/�)0 =

601−0
2 , and that Bob cannot compute this group element (assuming that the computational DH

problem is hard).” [32]

The possibility that Alice can derive two keys is now utilized in the protocol of Figure 2.10. The
first actions of Alice or the sender are identical to the Diffie-Hellmann key exchange. Bob or the
receiver, in turn, makes the value � dependent on its input parameter 2. Alice then uses :0 and :1
to derive different keys in both possible ways, which she then uses for the messages "0 and "1,
respectively. Bob can only decrypt one of the two messages, depending on 2.

2.2.3 Garbled circuits

Circuits, or more precise Boolean circuits, describe a mathematical model for digital circuits in
complexity theory. They provide an alternative representation of computations. A garbled circuit,
in turn, is a way to “encrypt” a computation. The goal is to reveal only the output or result, but not
the input or intermediate results.

According to [52], the idea goes back to Yao, who probably expressed it orally during presentations
on [111]. The first written document about garbled circuits, which also proves that any computation
can be implemented with garbled circuits, was in [51]. The first mention of the term “garbled
circuit” was in [9]. [3] describes a way to garble arithmetic circuits.

29

2 Basics

Sender Receiver
Input: ("0, "1) Input: 2

Output: none Output: "2

0 ← Z? 1 ← Z?
�=60

−−−−−−−−−−−−→
if 2 = 0 : � = 61

if 2 = 1 : � = �61

�←−−−−−−−−−−−−
:0 = � (�0) :' = � (�1)

:1 = � ((�
�
)0)

40←�:0 ("0)
41←�:1 ("1)
−−−−−−−−−−−−→

"2 = �:' (42)

Figure 2.10: “The Simplest Protocol for Oblivious Transfer”[32]

In general, a garbling scheme consists of:

• A way to convert a circuit � into a garbled circuit �̂.

• A way to convert any input G for the circuit into a garbled input Ĝ.

• A way to take a garbled circuit �̂ and garbled input Ĝ and compute the circuit output � (G).

According to [42], Yao’s garbled circuit protocol [111] is the best known MPC technique. This
protocol will now be used as an example to show the procedure for an AND circuit:

To garble a circuit, the circuit must first be created. This is done using the truth table of the AND
function in the first table of Table 2.1. The next step is for the so-called garbler to create a garbled
version of this table. To do this, he generates random keys4 for all possible values of a, b and c. He
then encrypts the output values using such a cipher, as shown in the second table in Table 2.1. Then
the rows of the truth table of the garbled version are randomly permuted, and the output column is
sent to the other person, the so-called evaluator.

Input Output
0 1 2

0 0 0
0 1 0
1 0 0
1 1 1

Input Output
0 1 2

:00 :10 �:00 (�:10 (:
2
0))

:00 :11 �:00 (�:11 (:
2
0))

:01 :10 �:01 (�:10 (:
2
0))

:01 :11 �:01 (�:11 (:
2
1))

Table 2.1: Truth table of the AND function and the garbled version.

4These keys must be able to act as keys for an authenticated symmetric encryption cipher, such as AES.

30

2.2 Secure multi-party computation

Now it is the evaluator’s turn. He now needs the corresponding input values from the garbler and
himself. It is easy to get the value from the garbler because he knows which key matches his value.
The evaluator‘s input value is converted to the matching key with the help of an 1-out-of-2 oblivious
transfer protocol (Section 2.2.2). Equipped with both keys, the evaluator can now decrypt precisely
one of the output columns‘ received rows. Afterward, he can tell the result to the garbler if it is a
2PC.

Of course, more complex circuits are also possible without setting up an overall truth table. Instead,
the encoded outputs, such as column c in the second table of Table 2.1, are used as input in the next
circuit, and the evaluator gets the output columns of all involved circuits. This nesting allows the
realization of circuits of any complexity.

2.2.4 Fully homomorphic encryption

A central task of ordinary encryption schemes is the protection of data. This protection usually
includes both protection against unauthorized reading and unauthorized modification of the data.
With homomorphic encryption, the protection is now intentionally reduced. The data should still be
protected against unauthorized readout, but it should be possible to calculate with the encrypted
data without decrypting it. Depending on which and how many functions for the computations are
supported by a homomorphic encryption scheme, a distinction is made between partially homo-
morphic encryption and fully homomorphic encryption. With partially homomorphic encryption,
either not all functions are supported, or the functions may not be used as often as desired. This
restriction does not apply to fully homomorphic encryption schemes.

Many known encryption schemes such as ElGamal [41] or RSA [92] in the textbook variant belong
to the partially homomorphic encryption. With both, it is possible to multiply the encrypted
plaintext, the cipher rate, with other cipher rates that were encrypted with the same key to obtaining
the encrypted product of both plaintexts. For the real use in the application scenarios mentioned
initially, we try to eliminate the homomorphism, which is, e. g. achieved with RSA by using padding
schemes like optimal asymmetric encryption padding (OAEP) [12]. For this reason, there are
various cryptosystems in the area of partially homomorphic encryption. A first hypothesis that
fully homomorphic encryption might be possible was made by Rivest in 1978 [91]. The first fully
homomorphic encryption scheme was published in 2009 by Craig Gentry [49] and implemented in
2010 [50].

To be able to represent all functions, addition and multiplication must be available as homomorphic
operations. In [48], Gentry describes the generation of a fully homomorphic encryption scheme
based on a symmetric encryption scheme. It handles addition, subtraction, and multiplication as
homomorphic operations, thus fulfilling a fully homomorphic encryption scheme‘s requirement.
When applying homomorphic operations to encrypted contents; however, noise is generated, which
means that at some point, depending on the strength of the noise, the value can no longer be
decrypted correctly. Multiplication increases the noise more than addition and subtraction. To use
fully homomorphic encryption with the limitation of this scheme, an operation called bootstrapping
is introduced. Bootstrapping removes noise from the cipher by re-encrypting it. Bootstrapping is so
essential that other published full homomorphic encryption schemes are based on it [18, 20, 21, 22,
28, 45, 74].

31

2 Basics

For the use of fully homomorphic encryption as an MPC protocol, each party must be able to
encrypt its input so that the other parties cannot decrypt it. However, at the same time, it must
be possible that all inputs can be used in a computation. For this use case, Lopez-Alt 2013 has
introduced a new category of encryption scheme, multi-key fully homomorphic encryption [74],
which allows the realization of k-out-of-k secret sharing schemes. In 2018 threshold multi-key fully
homomorphic encryption [8] was introduced to realize MPC protocols where the required number
of active computation parties is smaller than the total number of parties involved.

2.2.5 Functional encryption

Asymmetric encryption, also known as public-key encryption [36, 92], allows different keys to
be used for encryption and decryption. The public key can be public, and all data encrypted with
its help can be decrypted with the corresponding secret key. Thus, secure public-key encryption
ciphers ensure that one has either full access or no access to the plaintext, depending on whether
one has the secret key or not.

Functional encryption describes a generalization of public-key encryption. It provides fine-grained
access control by creating functions that return the function‘s result on ciphertexts as plain text and
no other information. For example, it is possible to implement a document management software
for encrypted documents that can read metadata from the encrypted documents and display them to
a user using functional encryption. Functional encryption was formally specified in 2011 [17].

In order to create an MPC protocol based on functional encryption, it must, of course, be possible
for each party to encrypt their inputs and to perform the desired computation on all encrypted
inputs. The easiest way to achieve this is to have a trusted, neutral party5 do the encryption. An
improvement to this method is Multi-Client Functional Encryption [53, 56], which still requires
a neutral party to create a master secret key. However, it allows all parties to encrypt their input
independently. Based on this, Decentralized Multi-Client Functional Encryption [31] was presented,
which allows the functionality without a central party.

2.2.6 Security models

To be able to compare the security of protocols, it is common practice to measure security using
uniform security models. Two representatives of such security models will now be briefly introduced
below: Semi-honest security and malicious security.

Semi-honest security

“A semi-honest adversary is one who corrupts parties but follows the protocol as specified.” [42]
This type of adversary is often referred to as passive or honest-but-curious. This level of security
prevents unintentional leakage of information between cooperating parties. Therefore, this security
level of MPC protocols should at least be achieved. In contrast to malicious security, protocols can
often be implemented efficiently in the semi-honest model.

5If such a party exists, one could generally reduce the computation effort by having this party do the entire computation
and send the results to all peers.

32

2.2 Secure multi-party computation

Malicious security

“A malicious (also known as active) [adversary] may instead cause corrupted parties to deviate
arbitrarily from the prescribed protocol in an attempt to violate security.” [42] In addition to
passively reading the log, a malicious adversary can also change any input. Therefore protocols of
this security level need to be able to verify any input so that one will find verifiable secret sharing
rather than simple secret sharing here. If a protocol can resist such adversaries, a high level of
security is achieved.

2.2.7 Real World/Ideal World paradigm

There are different ways to ensure the security of cryptographic protocols. One way is to create a
list of all relevant attacks and check the protocol for them. However, such a test result only provides
information about the protocol‘s security against already known attacks. Another possibility is
a mathematical proof, in which the protocol is reduced to its mathematical foundations, and the
proof of the mathematical foundations is generalized to the protocol. With MPC protocols, it is
often impossible to formalize the involved party‘s knowledge and the protocol‘s correctness for
such proof. On the one hand, it cannot be claimed that the parties involved do not learn anything
from the computation, because the output should be made available to all parties involved. On the
other hand, the correctness of the output cannot be guaranteed, since it depends on the input, but
maybe corrupted if there is at least one adversary. Thus, a new approach was established, the Real
World/Ideal World paradigm [7, 54].

The Real World/Ideal World paradigm consists of two concepts of the ideal world and the real world.
In the ideal world, secure computation is performed by a trusted, neutral party. The input from
each party is communicated directly to the neutral party, and the output computed by the neutral
party is communicated to everyone. Since this neutral party is trusted, it cannot be taken over by an
adversary, and it does not falsify any input. The adversary can corrupt only the other parties. Since
such a scenario is improbable, it represents the ideal world and only serves as a benchmark for the
real world.

In the real world, there is no trusted party. Instead, this trusted party is represented by a cryptographic
protocol. Adversaries can corrupt the parties. If this happens at the beginning of the protocol, it
corresponds to ideal world‘s attack scenario. A cryptographic protocol is considered secure if any
damage that an adversary can do in the real world is also possible in the ideal world.

33

3 Related Work

This chapter describes three sub-fields of ML that have the same goal: Create a model using
distributed data. Each sub-field sets different priorities.

Distributed ML How can a centralized model with central data be trained as quickly and
efficiently as possible?

Split learning How to train a common model without sharing training data?

Federated optimization How can a centralized model be trained with massively decentralized
and unbalanced data?

3.1 Distributed machine learning

Distributed machine learning also called distributed optimization describes techniques used to train a
model with central data on distributed computing resources. The computing resources can vary from
several GPUs to computing clusters with hundreds of GPUs or more. In the beginning, distributed
machine learning was necessary because computing resources were very limited. Nowadays, these
approaches are further developed to train more complex models with much more data. For example,
the Turing Natural Language Generation is a language model with 17 billion weights introduced by
Microsoft in February 2020 [95].

Over the years, three strategies for distributed optimization have emerged:

1. Data parallelism

2. Model parallelism

3. Pipeline parallelism

Additionally, recent approaches combine the advantages, which will be described in Section 3.1.4.

35

3 Related Work

3.1.1 Data Parallelism

Data1

Data2

Data3node 1
node 2
node 3

DNNSubset

Data

Figure 3.1: Data Parallelism

Data parallelism means to divide the training data into
several computing units, as shown in Figure 3.1. This
method is probably the most frequently used strategy, as
it is already known from other computer science areas.
The problem can be summarized in the following two
questions:

1. What is the best way to distribute the data?

2. What is the best way to bring the partial results
together again?

Hsu et al. [11] describe two basic approaches for dis-
tributing training data to multiple nodes. The so-called
instance-based sharding and the so-called feature-based
sharding, as depicted in Figure 3.2. Instance-based shard-
ing means that the whole training data is split to the num-
ber of nodes. Thus, the load per node is automatically
reduced because only a fraction of the data needs to be

processed and stored on each node. The other way is to split the training data in terms of its features.
While this does not reduce the number of instances per node, it does reduce the number of features
associated with an instance for each node and, thus, the amount of data associated with each instance.
This increases the potential throughput per node. Instance based sharding is the more common
strategy.

Data1

Data2

Data3

C

C

C

C C C

Instance based sharding Feature based sharding

Feature set 1

Feature set 2

Feature set 3

whole dataset
computing client 1
computing client 2
computing client 3

Figure 3.2: Two approaches to data splitting. Left: instance shards. Right: feature shards. [11]

According to [77], there are three common methods to train and combine the data parallelism‘s
partial results:

Distributed gradient computation method
If the training data is identically and independently distributed (IID), the weights‘ gradients can
be calculated in parallel for each shard‘s iteration. The different gradients can then be used to
calculate the exact global gradient on a single machine. Then the optimization step, weights‘

36

3.1 Distributed machine learning

update, and distribution of the new weights to the nodes can be performed. These computations
can be performed using map-reduce [33], where each iteration consists of a map phase to calculate
the gradients and the corresponding reduce phase for the update step [77].

Majority vote method
The first phase of this method is identical to the previous method. Each node uses its training
data to train its model. The models trained in this way are then used for classification by using
the result of the majority vote based on the trained models for an input value [77].

Mixture weight method
This method is an optimization of the majority vote method. In contrast to the majority vote
method, the respective weights‘ mean values are determined centrally and are distributed again
to all nodes before the next epoch. The weights determined in this way can also be used directly
for classification [77].

The significant disadvantage with data parallelism is its poor memory efficiency. The entire model
and optimizer state must be replicated across all nodes involved. According to [88], the largest
model that data parallelism can run has less than 1.5 Billion weights, assuming 32GB GPUs1.
Although not very large models are supported, with data parallelism, it is potentially possible to
train faster with the same amount of training data or to train with more training data for the same
training duration.

3.1.2 Model Parallelism

node 1
node 2
node 3

Data

DNN

Figure 3.3: Model Parallelism

In model parallelism, single or multiple layers of the
DNN are divided and distributed to different nodes, as
shown in Figure 3.3. Thus, each node has neurons from
each layer so that training can be done in parallel.

This approach is much more memory efficient than data
parallelism. However, the communication effort in-
creases strongly, since the distributed subareas of the
network partly need other subareas‘ results (activations)
as input data, e. g. dense layers (see Section 2.1.5). In
[88] it says:

“We tested a 40B parameter model using Megatron-LM
across two DGX-2 nodes and observe about 5 T flops
per V100 GPU (less than 5% of hardware peak).”

Another big drawback is that model developers often have
to adapt their model specifically to model parallelism to
support such splitting, while data parallelism works out
of the box.

1Represents the current state of the art.

37

3 Related Work

3.1.3 Pipeline Parallelism

Data

node 1
node 2
node 3

DNN

Figure 3.4: Pipeline Parallelism

In pipeline parallelism, the DNN is divided so that indi-
vidual or successive layers are distributed to the nodes,
as shown in Figure 3.4. In practice, it is also combined
with data parallelism so that individual slices can occur
several times.

An advantage of this parallelization form is that the com-
munication between nodes is limited to the slice bound-
aries‘ activations and gradients. Additionally, only the
corresponding layer(s) weights have to be kept and up-
dated, which can reduce memory round-trips [13]. The
disadvantage is that it is challenging to use all nodes
equally to utilize the entire system fully. Additionally,
the latency increases proportionally with the number of

nodes [13].

3.1.4 ZeRO

ZeRO is a technique for optimizing the memory in data parallelism. It promises to combine the
advantages of the previously listed strategies while eliminating the disadvantages. As a result,
larger models can be trained with the same memory consumption. More about this at the end of
this section. ZeRO stands for Zero Redundancy Optimizer and is developed at Microsoft [88].
Rajbhandari et al. divide the poor memory efficiency of data parallelism into two areas, which they
improve with different techniques:

ZeRO-DP optimizes the storage of model and optimizer states.

ZeRO-R optimizes the residual memory usage, which includes activation, temporary buffers,
and memory fragmentation.

The techniques described by ZeRO can already be used in practice as they are part of DeepSpeed [34],
a DL optimization library based on PyTorch2.

ZeRO-DP

ZeRO-DP increases the efficiency of the required memory footprint by partitioning optimizer states,
gradients, and weights to the individual nodes. The optimization consists of three stations: optimizer
state partitioning, gradient partitioning, and weight partitioning. In each of these partitions, the
associated memory area is distributed evenly among the individual computing units, which results
in an approximately linear distribution. At the same time, the total communication volume increases
to 1.5 times. Furthermore, it is stated: “ZeRO powers DP to fit models with arbitrary size as long
as there are sufficient number of devices to share the model states.” [88]

2PyTorch is a machine learning framework initiated by Facebook [44]

38

3.2 Split learning

ZeRO-R

Input layer

Output layer

Node

Server

Cut layer

Figure 3.5: Basic split learning
setup showing distri-
bution of layers across
node and server

ZeRO-R covers three techniques to keep the remaining memory
footprint as small as possible:

Partitioned Activation Checkpointing
Model parallelism requires replication of the ac-
tivations, which leads to redundancies across the
nodes. ZeRO-R eliminates these redundancies
by partitioning the activations and materializing
them only where they are needed for the computa-
tion. Besides, these activation checkpoints can be
swapped from the GPU–RAM to the CPU–RAM,
reducing the memory footprint to nearly zero.

Constant Size Buffers
Some high-performance libraries, such as
NVIDIA Apex, merge weights into large buffers
during training to provide high bandwidth for
mass operations. This increases memory con-
sumption, e. g. a 32-bit buffer for 3B weights
requires 12GB of memory. To achieve a good
price-performance-ratio between memory con-
sumption and performance, ZeRO-R uses a con-
stant size buffer for these operations when the
model becomes too large.

Memory Defragmentation
A separate memory management for temporary
data was created to use as much memory as possi-
ble. This avoids out-of-memory terminations due
to a lack of continuous memory.

3.2 Split learning

Split learning (SL) [57, 87, 105, 106] is another approach to train a common model without sharing
raw training data. As shown in Figure 3.5, this approach splits the model into a server and a node
part, hence its name. The last layer of the node part is called the cut layer. Figure 3.6 shows a
schematic illustration of one learning round with a single node. Before the first start, the server
sends the topological description of the model‘s node part to the node. The basic procedure for SL
is that a node starts the forward pass with a sample. The resulting tensor of its last layer, the cut
layer, is sent to the server. The server, in turn, uses this to train its model part. During the backward
pass, the server performs backpropagation as usual and, in the end, sends the gradient tensor of its
first layer to the node. The node then uses the obtained gradient tensor for its backpropagation, so
that at the end, a complete training round was executed. Depending on the network latency, the
training will be significantly slower than it takes place entirely locally.

39

3 Related Work

For adaptation to multiple nodes, two modes are offered, one is called “centralized mode” while the
other is called “peer-to-peer mode”. In centralized mode, the nodes communicate exclusively with
the server. After each round, the node uploads its weights to the server to be made available to other
nodes. In peer-to-peer mode, the server tells new nodes the last trained node‘s address to check out
the current weights. Besides, the weights are shared between the nodes [100], but unfortunately, this
is not explained in detail. In both modes, the restriction is that only one node can train at a time.

In order for the training to be successful, the nodes must tell the server the expected label. Possible
solutions without label sharing that require another network roundtrip are also covered in [106].

One may call SL a combination of data and pipeline parallelism since the nodes can train with
different data (data parallelism). The model is divided into two partitions one node and one server
(pipeline parallelism).

Node Server

1. start forward
 pass with local
 sample

2. send cut layer output 3. train with
 incoming
 data

4. send gradient generated
 at first layer

5. complete training
 by performing
 back-propagation

Figure 3.6: A schematic illustration of a split learning round with a single node.

To reduce the risk of leakage of input data during transmission between node and server, SL was
further developed into NoPeekNN [105]. NoPeekNN involves adapting the neural network to use
two loss functions, distance correlation (��$') on the node and categorical cross-entropy (���)
on the server. Distance correlation generalizes the correlation ' of two tensors in the following
ways [102]:

1. '(-,.) is defined for - and . in arbitrary dimensions;

2. '(-,.) = 0 characterizes independence of - and .

Thus, in this case, using distance correlation as a loss function between training data and the result
of the cut layer optimizes the weights so that both tensors are as independent as possible. The total
loss function for a sample - , cut layer result /̂ , true label . , and predicted label .̂ is

U1��$'(-, /̂) + U2��� (., .̂)

U1 and U2 are scalar weights to control the ratio of both functions. The greater the influence of
distance correlation, the more independent input data, and transmitted data will be. The consequence
of this inserted noise is that, depending on the size of U1, significantly more training is required to
achieve an accuracy comparable to that without noise.

40

3.3 Federated optimization

3.3 Federated optimization

FO is an approach to create and improve a common model with decentralized data. It was developed
at Google and was originally intended for the further training of models on mobile devices [27,
67, 68, 69, 81, 82]. FO is used in GBoard3 for word and emoji prediction [26, 58, 89]. FO‘s opti-
mization problem is designed for specific key characteristics, which differentiate it from distributed
learning:

Limited communication By focusing on mobile devices, network connectivity, and the available
battery capacity may be limited. Therefore only one communication
round per day is expected.

Non-IID data Training data is typically very user-dependent, so a particular node‘s
data will not represent all nodes.

Unbalanced data The amount of training data varies significantly between nodes. Some
will have a multiple of the data available to others.

Massively distributed It is assumed that the number of nodes will be much larger than the
average amount of training data.

Algorithm 3.1 FederatedAveraging. The nodes are indexed by :; � is the local minibatch size;
� is the number of local epochs; [is the learning rate. [81]

1: function FedAvg // Executed on server
2: initialize F0
3: for each round C = 1, 2, . . . do
4: (C = (random set of <0G(� · , 1) nodes)
5: for each node : ∈ (C in parallel do
6: F:

C+1 ← #>34*?30C4(:, FC)
7: end for
8: FC+1 ← Σ

C=1
=:
=
F:
C+1

9: end for
10: end function
11: function NodeUpdate(:, F) // Executed on nodes :
12: for each local epoch i from 1 to E do
13: batches← (data %: split into batches of size �)
14: for batch 1 in batches do
15: F ← F − [∇; (F; 1)
16: end for
17: end for
18: return F to server
19: end function

Algorithm 3.1 shows the basic algorithm of FO called FederatedAveraging. The single central
server determines random nodes for each round. Each node trains the model locally with its data and
then sends the updated model weights to the server. The server computes the average values from

3GBoard is a keyboard application for iOS and Android

41

3 Related Work

the weights received and thereby updates his model. For this algorithm to work, the common model
must be distributed to the nodes regularly, if possible, before a new round begins. A schematic
illustration of one round is shown in Figure 3.7.

Node1

Noden

…

Server

1. transfer model

1. transfer model

2. train with
 local data

2. train with
 local data

3. transfer updated weights 4. Update
common

 model

Figure 3.7: A schematic illustration of one federated optimization round. It consists of four phases:
1. Transfer the central model from server to all participating nodes. 2. The nodes train
the model with their local data. 3. The updated weights are sent to the server. 4. The
server updates the common model by averaging the weights.

This algorithm provides higher data privacy even in this basic version than the presented distributed
learning approaches because the information transmitted between nodes and server is limited to the
updated weights. This means that neither the training data is collected in a central location, nor
does the training data leave the device.

In 2006, a new mechanism called Differential Privacy [39, 40] was introduced to improve privacy
protection. More precisely, the goal is formulated with: “the risk to one’s privacy [· · ·] should not
substantially increase as a result of participating in a statistical database.” [39]

In [80], the basic FO approach was not only extended by the application of differential privacy but
additionally, an extension of TensorFlow called TensorFlow Privacy [2] was created, which allows
a straightforward application of these principles. At about the same time, another approach was
presented, private FO [15], which combines FO with differential privacy. Private FO uses differential
privacy not only on the server-side but also in a modified form called separated differential privacy
on the nodes.

In recent years, so-called adaptive optimizers have become increasingly popular, as they often
converge faster than stochastic gradient descent (SGD). Adaptive in this context means that the
learning rate can be adapted dynamically per weight. For example, the learning rate can be increased
if the gradient had the same sign twice. With [90], an approach for adaptive federated optimization
has now been introduced. A generalized version of FedAvg is derived, which then allows different
optimizers for node and server-side.

42

4 Analysis & Design

Distributed learning, FO, and SL solve the problem of creating a common model in different ways.
A short comparison is shown in Table 4.1. Distributed learning is primarily about faster training
times within a data center. FO and SL both try to enable federated learning for any data distribution
through different approaches. However, since both rely on a centralized communication model, it is
impossible to implement the initial scenario: Parties, e. g. competitors, to create a common model
without one party gaining more advantages over the others.

Distributed learning Split learning Federated optimization
Communication
architecture

Client-server Client-server and
peer-to-peer

Client-server

Data distribution Balanced and IID Balanced/ Unbalanced
and IID/ non-IID

Balanced/ Unbalanced
and IID/ non-IID

Main purpose Distribute to train mod-
els faster with central-
ized training data

Create a common
model without sharing
training data

Create a common
model without sharing
training data

Table 4.1: Comparison of distributed learning, federated optimization and split learning

The concepts of SL and FO can serve as an interesting basis for a decentralized communication
model. The challenge is to replace the central server with something decentralized and then
examine such a change‘s implications. The following sections, therefore, show how both approaches
can be implemented without a central server. Thus, the approaches‘ communication behavior is
first analyzed to then present alternative decentralized communication models and finally analyze
them.

4.1 Decentralized communication approach for split learning

4.1.1 Analysis of split learning

On closer inspection of SL, it is noticeable that two different communication channels are used:

1. A bidirectional connection between the client that is currently training and the server (client-
server).

2. A unidirectional connection between the current training client or last trained client with at
least one other client to propagate the new weights (peer-to-peer).

43

4 Analysis & Design

The bidirectional network connection during training has a significant negative impact on the
training duration because SL has to exchange data between client and server for each pass (forward
and backward), i. e. for each training sample twice per training epoch. Divided according to
the respective passes, the additional work involved in splitting the model can be described by the
following processes:

Forward pass: • Serialization of the data from the client GPU.

• Network transport to the server.

• Deserialization of the data on the server-side.

Backward pass: • Serialization of the data from the server GPU.

• Network transport to the client.

• Deserialization of the data on the client-side.

Due to the latencies arising in that way, the client cannot be used to full capacity for the entire
duration of the training, which results in unused resources and increased time consumption. These
processes would be omitted by switching to a decentralized communication approach and the
associated elimination of the central server.

There are also the following challenges for which no concrete solution has been described:

• System-related only one training session may take place at a time.

• After each training session, the new valid model must be communicated to all peers.

• New peers must be provided with the currently valid model.

4.1.2 Design of decentralized version

peer1 peer2

peer3peer4

1. train with
 local data

2. transfer weights

2. transfer weights

2. transfer
 weights

Figure 4.1: The distribution strategy
when one peer sends the up-
dated weights to all others.

Without a central server, each client or preferably peer
would have to train the entire model locally and then
propagate all weights to the other peers. This change
eliminates the basic idea of SL, the splitting. Instead, it
is the continuous training of a model. The training of an
already pre-trained model is not a new idea; it belongs to
an area called transfer learning [103]. The difference is
that Transfer Learning usually uses models that have been
trained with huge general datasets to use such pre-trained
models for faster training for a specific task [5, 99].

Different strategies are conceivable for the propagation
of weight values after training, whereby two strategies
are probably the most obvious. Either the weights are
propagated from the peer who has just finished training to

all others, as shown in Figure 4.1, or the weights are always propagated to the next peer, comparable
to a bucket chain (Figure 4.2). The second strategy distributes the necessary communication effort
among all peers.

44

4.1 Decentralized communication approach for split learning

peer1 peer2

peer3peer4

1. train with
 local data

5. train with
 local data

2./8. transfer
 weights

4./6. transfer
 weights

3. transfer
weights

7. transfer
 weights

Figure 4.2: A schematic illustration of peer-to-peer learning with four peers. It consists of two
phases: 1./5. One peer trains the currently valid common model locally. 2.-4./6.-8. The
updated weights are propagated between all peers.

4.1.3 Analysis of decentralized version

By eliminating the communication between client and server, the training times should decrease
significantly. The communication effort between the peers would increase compared to SL since
now all weights must be communicated after training has been completed and previously, only those
of the client-side model.

One way to ensure that not more than one training session can take place at the same time is token
passing. A message, the so-called token, would always circulate between all peers, and the peer
who currently “owns” the token would be allowed to train. In combination with the bucket chain
distribution approach (Figure 4.2), it has the advantage that such a ring between peers must also be
maintained so that the already established communication channels can be reused.

From a privacy perspective, this decentralized approach does not differ much from the original
approach. In SL, the client-side weights were already shared with all other participating clients
before, which has now been extended. In return, the necessary trust for the operator of the central
server is eliminated. For this reason, attacks that attempt to reveal training data, such as Generative
Adversarial Model INversion (GAMIN) [1], are still possible. Especially for the first training parties,
there is an increased risk in the initial period. Other parties who have not yet trained could draw
conclusions from the training data without having already exposed themselves to this risk.

45

4 Analysis & Design

4.2 Decentralized communication approach for federated optimization

4.2.1 Analysis of federated optimization

Figure 4.3 shows the abstract processes of FO, regardless of the technology or communication
structure used. Each client1 trains with its local data. With FO, the central server is used for steps 2
and 3; therefore, there is only one network connection between each client and the server. Besides,
the clients do not know each other since they communicate exclusively with the server.

peer1 peer2

peer3peer4

1. train with
 local data

1. train with
 local data

1. train with
 local data

1. train with
 local data

2. Calculate
mean values
of the weights

3. apply
new weights

3. apply
new weights

Figure 4.3: A schematic illustration of the abstract processes of FO with four peers. It consists of
three phases: 1. All peers train the currently valid common model locally. 2. The mean
values of the weights are calculated, i. e. Algorithm 4.1. 3. The updated weights are
applied.

4.2.2 Design of decentralized version

In order to replace the function of the central server with a decentralized technology in FO, it
is necessary to map the functionality of FedAvg differently. When converting to a decentralized
communication model, steps 2 and 3 of Figure 4.3 must be implemented accordingly.

The easiest way to do this would be that all parties communicate their weight values after the
training. This would allow each individual to calculate the average value independently. This
method‘s problem is similar to the decentralized method described in Section 4.1 or SL in general.
After the first communication round, attacks like GAMIN [1] are ideal because one gets all parties‘
pure weights.

1referred to as peer in the figure

46

4.2 Decentralized communication approach for federated optimization

The data privacy can be increased by incorporating MPC (Section 2.2). MPC allows a group to
perform a common computation without one member’s data becoming known to the other peers.
Thus it fulfills precisely the use case desired here: The mean values of all weights are calculated
without the concrete weights being known. For this reason, the algorithm SecAvg (Algorithm 4.1)
was developed in the context of this work. It is applying a slight modification of the presented
additive secret sharing scheme (Section 2.2.1).

To share a secret with ? parties, the presented secret sharing scheme chooses ? − 1 field elements
B1, . . . , B?−1 randomly, and the last element B? is defined as B? = B −∑?−1

8=1 B8 [76]. Instead the
chosen scheme here generates ? random numbers A=1, . . . , A=? and normalizes them by dividing
through their sum ?_A=8 = A=8∑?

:=1 A=:
, 8 ∈ {1, . . . , ?}. The resulting percentage distribution is then

used to generate the actual field elements B1, . . . , B?, where B8 = B ∗ ?_A=8 , 8 ∈ {1, . . . , ?}.

SecAvg now uses this secret sharing scheme to calculate the mean values. For distributing the
computation, it benefits from the fact that a sum can be formed from the sum of its subtotals:

1. Each party divides its weights into ? parts using the secret division scheme, sends one part to
another party, and keeps one part.

2. Each party then totals the received parts and the retained part and sends this partial sum to all
other parties.

3. Each party adds up all partial sums and divides the result by ?.

In the following, it is now shown that the computations of the algorithm are correct.

Lemma 1
The function Divide of Algorithm 4.1 divides the parameter F so that F =

∑=
8=1 ?0A_F8 applies.

Proof of lemma 1

F =

=∑
8=1

?0A_F8

=

=∑
8=1

F ∗ ?_A=8 (lines 27-29)

=

=∑
8=1

F ∗ A=8∑=
9=1 A= 9

(lines 23-25)

= F ∗
=∑
8=1

A=8∑=
9=1 A= 9

= F ∗
=∑
8=1

A=8

A=1 + . . . + A==

= F ∗ A=1 + . . . + A==
A=1 + . . . + A==

= F ∗ 1
1

= F �

47

4 Analysis & Design

Algorithm 4.1 A MPC version for averaging values
Input: = = number of peers; FC = the weights tensor

1: function SecAvg(=, FC)
2: ?0A_FC = a tensor with dimension 38<(FC) + 1
3: for F ∈ FC do
4: ?0A_FC.append(�8E834(F, =)) // Divide each weight into = randomly large fractions
5: end for
6: for 8 = 2 to = do // Send a fraction of all weights to a peer, assuming that you are ?44A1
7: Send ?0A_FC8 to ?44A8
8: end for
9: Save all received fractions of the other peers and ?0A_FC1 in 5 _FC

10: 0E6_FC = a tensor with dimension 38<(FC) + 1
11: for 5 _F ∈ 5 _FC do// Calculate the average value from the known fractions of each weight
12: 0E6_FC.append(

∑=
8=1 5 _FC8
=

)
13: end for
14: Send 0E6_FC to each peer
15: Save all received average values of the other peers and 0E6_FC in 0_FC
16: for 8 = 1 to |F | do // Sum up all average values received per weight
17: F8 =

∑=
9=1 0_FC 9

18: end for
19: return F
20: end function
21:
22: function Divide(F, =)
23: A= = Array of = random numbers (A=1, . . . , A==)
24: ?_A= = Array of length = (?_A=1, . . . , ?_A==)
25: for 8 = 1 to = do
26: ?_A=8 = A=8∑=

:=1 A=:
27: end for
28: ?0A_F = Array of length = (?0A_F1, . . . , ?0A_F=)
29: for 8 = 1 to = do
30: ?0A_F8 = ?_A=8 ∗ F
31: end for
32: return ?0A_F
33: end function

Theorem 2
Algorithm 4.1 calculates the arithmetic average of all given weights FC.

Proof of theorem 2 1
The loops in Algorithm 4.1 perform all operations on all weights. For this reason, only one weight
F8 is discussed below.

48

4.2 Decentralized communication approach for federated optimization

The arithmetic average of = values (F11, . . . , F1=) is determined by 1
=
∗∑=

8=1 F18 .

F8 =

=∑
9=1
0_FC 9 (line 17)

=

=∑
9=1

=∑
?=1
(
∑=
:=1 5 _FC:

=
)?44A? One fraction per peer (line 12)

=

=∑
9=1
((
∑=
:=1 5 _FC:

=
)?44A1 + . . . + (

∑=
:=1 5 _FC:

=
)?44A=)

=
1
=
∗ ((

=∑
:=1

5 _FC:)?44A1 + . . . + (
=∑
:=1

5 _FC:)?44A=)

=
1
=
∗ ((?0A_FC1?1 + . . . + ?0A_FC=?1)

+ (?0A_FC1?=
+ . . . + ?0A_FC=?=))

=
1
=
∗ ((?0A_FC1?1 + . . . + ?0A_FC1?=

)

+ (?0A_FC=?1 + . . . + ?0A_FC=?=))

=
1
=
∗

=∑
8=1

5 _FC8 According to lemma 1 �

4.2.3 Analysis of decentralized version

The communication effort is increased by the conversion to a decentralized communication model.
A client in the centralized scenario must send all n weights to the server once after the training to
calculate the average values. While in the decentralized scenario, the weights are sent ? − 1 times
per party, where ? is the number of parties, in the simple case. In SecAvg, even 2 ∗ (? − 1) because
the computation of the mean value is split. On the receiving side, it is the same.

From a privacy perspective, the previously required trust for the operator of the central server is no
longer needed. In the simple case2, attacks such as GAMIN [1] have similar risks to SL because
the pure weights are transferred. These risks do not apply when using SecAvg. Besides, all peers
involved must now know each other.

If one recalls the Real World/Ideal World paradigm presented in Section 2.2.7, one will notice that
FO‘s previous approaches describe the ideal world case. Basically, the central server corresponds
to the trusted, neutral party in a distributed computation. The computations of the mean values
are represented in the real world by SecAvg. Therefore, a security assessment using the Real
World/Ideal World paradigm must highlight the additional information that can be obtained when
using SecAvg. When considering the ideal world, each party receives only the weight averages, i. e.
the computation results. When considering the real world with the help of SecAvg, the parties, of
course, also receive the weight averages as results. They also receive a share of each weight value

2The operator of the central server has the same attack possibilities as long as no private FO [15] is used.

49

4 Analysis & Design

and the partial sums formed from each party. The secret sharing scheme used divides the weight
values randomly, so the underlying weight value can only be reconstructed from all parts, which is
also the essential requirement of any k-out-of-k secret sharing scheme. The summands involved
cannot be reconstructed from a sum either, so the communicated subtotals do not provide any further
information about a party’s weight values. Although all parties receive more information than in
the ideal world case, this additional information does not allow any further conclusions about the
actual secrets (the weight values).

However, this statement is only valid for semi-honest security, i. e. when all involved parties follow
the protocol. In the case of malicious adversaries, the presented MPC protocol is not secure enough.
The distributed partial weights cannot be verified, and therefore neither can the computed partial
sums. For this reason, there is not sufficient protection against such adversaries.

50

5 Implementation

The primary purpose of prototype development was to be able to test the considerations made so
far. This means that the prototypes described here are not directly designed to learn together across
network boundaries. However, instead, the focus is on good traceability of the results, including all
intermediate results. The prototype was developed in Python. The complete source code can be
found in Appendix B.2.

When implementing Algorithm 4.1, it had to be determined how the tensors would be transferred.
The decision was made that any exchange should be file-based. This has the advantage, among
other things, that all intermediate results can be traced directly as long as the files are not deleted.
Hierarchical Data Format version 5 (HDF5) is to be used as the exchange format. HDF5 is a
manufacturer-neutral, self-describing format that is also directly supported by TensorFlow. A
further advantage of using file exchange is that it also works across PC boundaries if all peers use a
common network share.

A naive implementation of Algorithm 4.1 would call the function divide for each weight individually.
Therefore, for 1.6 million weights1 and 4 peers, the function will generate 1.6 million times 4 random
numbers to divide each weight into 4 parts. This implementation took 15 minutes on an Intel Core
i7-4790 at 4GHz. With the simulation of all 4 peers on a single machine, it was several hours.

Listing 5.1 The implementation of Divide in Python

1 def divide(weights, peers, rnd_gen):

2 rn = [rnd_gen.integers(1, 5, peers) for _ in range(len(weights))]

3 for i in range(len(rn)):

4 rn[i] = rn[i] / rn[i].sum()

5 rn = np.array(rn).transpose()

6 return rn * weights

For this reason, a modified form with equivalent result was chosen, which is shown in Listing 5.1.
Instead of taking the described steps one by one, the function shown there is designed to deal
directly with vectorized data, i. e. data in one-dimensional arrays. After refactoring the function
divide to processing vectorized data, splitting a model with 1.6 million weights in 4 parts on an
Intel Core i7-4790 at 4GHz took only about 20 seconds. First, a list of #peers random numbers is
created in line 2; the list has #weights many elements. These random numbers are normalized in
the following loop in such a way that the sum is 1, so they correspond to a percentage distribution.
In line 5, this list is converted into a NumPy2 array to transpose it directly. rn contains after line
5 a NumPy array with #weights elements in the first dimension with #peers sub-elements. In line

11.6 million weights are very few today, as described in Section 3.1
2NumPy is a Python library for efficient calculation with tensors and is very often used in the context of ML.

51

5 Implementation

6, the actual division of the weights takes place, which looks like a simple multiplication thanks
to NumPy. For a better understanding, the individual steps of divide are now illustrated with the
following example:

Input parameters:
weights = [1, 0.5, 0.25]

peers = 2
rnd_gen = 22 , with initial 2 = 0 and 2 = 2 + 1 with each call.

After line 2:
rn = [array([1, 2]),

array([2, 4]),
array([4, 8])]

After lines 3-4:
rn = [array([0.333, 0.667]),

array([0.333, 0.667]),
array([0.333, 0.667])]

After line 5:
rn = array([[0.333, 0.333, 0.333],

[0.667, 0.667, 0.667]])

Output parameters:
array([[0.333, 0.1667, 0.0833],

[0.667, 0.3333, 0.1667]])

The weights in Keras models are arranged below the specific layers. Therefore, not all weights
can be queried directly, as described in lines 3-5 of Algorithm 4.1, but must be queried for each
layer individually. Also, the dimension of the weight tensors depends on the layer type and specific
layer configuration. Keras uses NumPy arrays to store the tensors and returns the corresponding
weights as a list of NumPy arrays when get_weights() on a layer is called. NumPy arrays have a
shape property that specifies which dimension has how many associated elements. For example, a
convolutional layer with 32 filters, a kernel size of (5, 5), a step size of 1 with padding=“same”, and
bias=True, and one input channel returns this list of NumPy array shapes [(5, 5, 1, 32), (32,)].
In contrast, a call to get_weights() for a MaxPooling layer returns an empty list because there are
no weights. A dense layer with 3136 input channels and 512 output channels returns this list of
NumPy array shapes [(3136, 512), (512,)]. For this reason, it is crucial that the implementation
can handle such dynamic shapes.

Listing 5.2 shows the implementation for splitting the transferred weights. It is assumed that
the parameter layer_weights contains a list of weights, as mentioned before. The first for-loop
(lines 3-5) is executed for each element of the passed layer weights. First, in line 4, the possibly
multidimensional array is converted into a one-dimensional array using the NumPy function ravel,
so that the function divide (line 5) always gets one-dimensional data passed. The result of the
function divide is an array of the shape (#flat_weights, #peers) and is also added to the list F in
line 5. In lines 7-9, the final_weights list is pre-initialized so that it then has #peers elements,

52

Listing 5.2 Implementation for dividing the layer weights in Python

1 def divide_layer(layer_weights, peers, rnd_gen=np.random.default_rng(time.time_ns())):

2 w = []

3 for weights in layer_weights:

4 flat_weights = np.ravel(weights)

5 w.append(divide(flat_weights, peers, rnd_gen))

6

7 final_weights = []

8 for _ in range(peers):

9 final_weights.append(layer_weights)

10

11 for p in range(peers):

12 for i in range(len(layer_weights)):

13 final_weights[p][i] = w[i][p].reshape(layer_weights[i].shape)

14

15 return final_weights

which all have the same shape as layer_weights. In lines 11-13, the values of final_weights

are overwritten with the values previously calculated by divide. To ensure that the values are
compatible, the conversion to a one-dimensional array must be reversed. This is done with the
Numpy function reshape, which converts the shape of the array on which the function is called
into the given form. For this to succeed, the shapes must be compatible, which means that the total
number of elements of both shapes must be identical. During the copy process, a restructuring
of the data also takes place, while the form of reshaped F is (#layer_weights, #peers), i. e. each
weight consists of #peers elements, final_weight has the shape (#peers, layer_weights), each peer
has #layer_weights elements.

Listing 5.3 shows a condensed version of Listing 5.2, which uses list comprehensions to maximize
performance.

Listing 5.3 Minimized version of divide_layer

1 def divide_layer(layer_weights, peers, rnd_gen=np.random.default_rng(time.time_ns())):

2 w = [divide(np.ravel(weight), peers, rnd_gen) for weight in layer_weights]

3 final_weights = [layer_weights for _ in range(peers)]

4 for p in range(peers):

5 for i in range(len(layer_weights)):

6 final_weights[p][i] = w[i][p].reshape(layer_weights[i].shape)

7 return final_weights

53

6 Experiments

This chapter will show how well the discussed approaches work in practice. The experiments were
performed with three different image classification datasets. Accordingly, three different models
were designed for this purpose. The dataset-specific subchapters are structured identically. First,
the dataset and the model are presented, and then, the experiments are analyzed. The corresponding
source code can be found in Appendix B.1.

Comparing the three datasets and the associated tasks with each other, Section 6.1 is a simple
experiment where each party has a relatively large amount of training data consisting relatively
simple images. Section 6.2 is a bit more challenging than Section 6.1, the now colored images are
slightly bigger, but the amount of training data is similar. In contrast, the task in Section 6.3 is much
more challenging because compared to Section 6.1, the parties do not even have 1/6 of the training
data available, and the data is much more complex.

In general, all experiments were performed with balanced data, i. e. all parties involved had similarly
large datasets. The experiments were performed with both approaches presented in Chapter 4. To
be able to compare the effort of the approaches, the respective communication effort is calculated,
which describes how many weights must be communicated in total.

Decentralized split learning uses the approach from Section 4.1, which was simulated by training a
model locally, alternating with different training data. A communication round using this approach
means that one party has trained the model locally and then communicates it to all other parties
involved. This results in a communication effort of (? − 1) ∗ = weights, where ? is the number of
parties involved, and = is the number of weights.

Decentralized federated optimization uses the approach from Section 4.2. One communication round
using this approach means that all parties involved have trained the model locally and then calculated
the weights‘ mean values. The communication effort per communication round depends on the
selected security level. Without data protection, the communication effort is ?∗(?−1)∗= = =(?2−?)
weights, since each party must communicate all weight values to each other. With SecAvg (semi-
honest security), the communication effort is ? ∗ (? − 1) ∗ = + ? ∗ (? − 1) ∗ = = 2=(?2 − ?) weights,
since the weight parts must be distributed first and then the subtotals.

55

6 Experiments

6.1 Experiments on MNIST

All experiments aimed to achieve 99% accuracy in the test dataset, whereby the experiments were
stopped after 3, 000 training rounds at the latest. Each experiment was performed five times,
which are then called Run1 - Run5. Additionally, the following parameters were used over all
experiments:

• Party count: 5

• Optimizer: Adam

• Learning rate: 0.001

• Loss function: Categorical cross-entropy

• Number of epochs: 1

• Batch size: 64

• Validation split1: 0.2

6.1.1 MNIST dataset

Figure 6.1: Example digits from the MNIST
dataset

The Modified NIST dataset is a well-known set of
images (28x28 pixels) showing handwritten digits.
It was first introduced by LeCun et al. in [71] and is
a subset of a larger set available from NIST. Today it
is often called the “hello world” of ML. The dataset
consists of a training set of 60, 000 annotated images
and a test set of 10, 000 annotated images. Figure 6.1
shows some digits from the dataset.

The MNIST dataset is used because it is well known,
and at the same time, it is small enough to train
models quickly even with commodity hardware.

6.1.2 The applied model

The model applied here is a small DNN for image recognition. It consists of 8 layers and 1, 663, 370
weights in total. This model was chosen because it corresponds to one of the two models chosen for
the MNIST dataset by [81], so the results should be comparable.

1“Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this
fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the
end of each epoch.” [104]

56

6.1 Experiments on MNIST

…

0
1

9…

Flatten

Convolution
Kernel: (5, 5)

Padding: same
Activation: ReLU

Convolution
Kernel: (5, 5)

Padding: same
Activation: ReLU

MaxPooling
Poolsize: (2, 2)

Dense
Units: 512

Activation: ReLU

Dense
Units: 10

Activation: So�tmax

(28, 28, 1) (28, 28, 32) (14, 14, 64) (7, 7, 64) (3136) (512) (10)(14, 14, 32)

MaxPooling
Poolsize: (2, 2)

Figure 6.2: The applied model

Figure 6.2 shows the applied model as a schematic representation. The different types of layers
have already been discussed in Section 2.1. The layers are written in bold on the top. Below, the
values describe the applied hyperparameters. The corresponding tensor dimensions are shown at
the bottom.

6.1.3 Experiment M1: IID data

0 1 2 3 4 5 6 7 8 9

2,000

4,000

6,000
1197

1369
1224 1190 1182

1080
1143 1205

1204 1206

1197
1276

1153 1236 1167 1126
1198 1234

1216 1197

1161
1363

1234 1255 1150 1047 1198 1275 1141 1176

1213 1340 1171 1196 1150 1136 1188 1301 1114 1191

1155 1394 1176 1254 1193 1032 1191 1250 1176 1179

class

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure 6.3: Dataset distribution for experiment M1.

This experiment represents the simplest and most optimal case. The data distribution of the five
involved parties is IID. This distribution was achieved by shuffling the training data and then
distributing it among the parties. Each party received 1/5 of the total training data, i. e. 12, 000
annotated training images for each party. The concrete distribution is shown in Figure 6.3, where it
can be seen that the training images of the digits were similarly distributed between the parties.

It turned out that a single party under the boundary conditions described before with 12, 000
annotated training images was only able to achieve 99% accuracy in three of 25 experiments (5
runs with 5 different datasets each). The accuracy of 99% was achieved in the three cases after 34,

57

6 Experiments

2 4 6 8 10 12 14
0.95

0.96

0.97

0.98

0.99

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.4: Test accuracy over communication rounds for decentralized SL of experiment M1.

278, and 365 rounds, respectively. Presumably, it is possible to get more out of the 12, 000 training
images by changing the boundary conditions, but this result should only serve as a lower limit for
federated learning.

Figure 6.4 shows the accuracy curve for five runs with decentralized SL. As can be seen, this
scenario‘s approach is appropriate, as all runs have reached the set target of 99% accuracy. The
minimum number of communication rounds was 9 (Run1); the maximum number was 15 (Run4),
and the median was 12.

Figure 6.5 shows the results of experiments with decentralized FO. This approach is also suitable
for the scenario described since all runs have reached the set target of 99%. The minimum number
of communication rounds was 4 (Run2, Run4, Run5), and the maximum was 5 (Run1, Run3).

2 4 6 8 10 12 14
0.95

0.96

0.97

0.98

0.99

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.5: Test accuracy over communication rounds for decentralized FO of experiment M1.

58

6.1 Experiments on MNIST

If one compares both approaches‘ results, the results of decentralized FO look better at first glance.
However, on closer inspection one has to make two distinctions: The number of all training rounds
completed and the required communication effort per round. In the case of decentralized SL, the
number of all completed training rounds corresponds to the number of communication rounds.
In the case of decentralized FO, the factor ? lies between the number of training rounds and the
number of communication rounds. In the case of decentralized FO, the communication effort per
communication round depends on the security level selected. The exact values of the respective
efforts are shown in Table 6.1. According to this, the effort of the data privacy offered by SecAvg is
a good three times higher than with decentralized SL.

#communication
rounds

#training
rounds

communication
effort per round

(in weights)

total
communication

effort (in weights)
Decentralized SL 12 12 6, 653, 480 79, 841, 760
Decentralized FO
(no privacy)

4 20 33, 267, 400 133, 069, 600

Decentralized FO
(SecAvg)

4 20 66, 534, 800 266, 139, 200

Table 6.1: Comparison of the required effort of experiment M1, based on median results.

6.1.4 Experiment M2: non-IID data (5%)

0 1 2 3 4 5 6 7 8 9
0

2,000

4,000

6,000

4640 47204720 4960
4640 43204720 4880

4720 5360

class

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure 6.6: Dataset distribution for experiment M2.

In contrast to experiment M1, the data distribution is not IID. As shown in Figure 6.6, each party has
two main classes, of which they have by far the most training images. Of the remaining digits, they
have only 1/4 of the data from experiment M1. More precisely, each party has 80% of its main digits‘
training data and 5% of the remaining digits‘ training data. With such a distribution, in contrast to
experiment M1, it is no longer possible for a single party alone to achieve 99% accuracy.

59

6 Experiments

50 100 150 200 250 300 350
0.20

0.40

0.60

0.80

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.7: Test accuracy over communication rounds for decentralized SL of experiment M2.

Figure 6.7 shows the accuracy curve for five experiments with decentralized SL. As can be seen,
scenario‘s approach is appropriate, as all runs have reached the set target of 99% accuracy. The
minimum number of communication rounds was 290 (Run5), the maximum number was 356 (Run4),
and the median was 340.

Figure 6.8 shows the results of experiments with decentralized FO. This approach is also suitable
for the scenario described since all runs have reached the set target. The minimum number of
communication rounds was 155 (Run3), the maximum was 185 (Run2), and the median was 158.

50 100 150 200 250 300 350
0.20

0.40

0.60

0.80

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.8: Test accuracy over communication rounds forr decentralized FO of experiment M2.

When comparing the two approaches, the results of decentralized FO also look better at first glance,
so we now examine the results again according to the total number of training rounds and the
communication effort required. In the case of decentralized SL, the number of all completed
training rounds corresponds to the number of communication rounds. In the case of decentralized

60

6.1 Experiments on MNIST

FO, the factor ? lies between the number of training rounds and the number of communication
rounds. In the case of decentralized FO, the communication effort per communication round depends
on the security level selected. The exact values of the respective efforts are shown in Table 6.2.
According to this, the effort of the data privacy offered by SecAvg is a good 4.5 times higher than
with decentralized SL.

#communication
rounds

#training
rounds

communication
effort per round

(in weights)

total
communication

effort (in weights)
Decentralized SL 340 340 6, 653, 480 2, 262, 183, 200
Decentralized FO
(no privacy)

158 790 33, 267, 400 5, 256, 249, 200

Decentralized FO
(SecAvg)

158 790 66, 534, 800 10, 512, 498, 400

Table 6.2: Comparison of the required effort of experiment M2, based on median results.

The experiment was also performed with modified distributions, so that each party’s training data
became more specialized, leaving each party with only 3% and 1% of the training data of the
non-main digits, respectively. Interestingly, the results for these distributions do not differ much
from those described here. Decentralized SL required 340 and 387 communication rounds in
the case of 3% and 1% in the median. Decentralized FO required 198 and 184 communication
rounds for 3% and 1%, respectively. The corresponding graphs can be found in Appendix A.1
and Appendix A.2.

6.1.5 Experiment M5: non-IID data (0%)

0 1 2 3 4 5 6 7 8 9

0

2,000

4,000

6,000

5800 59005900 62005800 54005900 61005900
6700

class

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure 6.9: Dataset distribution for experiment M5.

In this experiment, the most extreme distribution was chosen. As shown in Figure 6.9, the datasets
are now completely disjointed. Thus, each party has only the training data of the two main digits
available, and the other digits‘ training data is no longer available.

61

6 Experiments

Figure 6.10 shows the accuracy curve for five experiments with decentralized SL. As can be seen,
this scenario‘s approach is appropriate, as all runs have reached the set target of 99% accuracy.
The minimum number of communication rounds was 451 (Run1), the maximum number was 527
(Run4), and the median was 488.

Figure 6.11 shows the results of experiments with decentralized FO. Surprisingly, the results show
that only 2 of 5 runs reached the set target of 99% accuracy. The best result was achieved in Run1
with 872 communication rounds, and in Run2, there were 933 communication rounds, giving an
average of 902.5.

100 200 300 400 500 600 700 800 900
0.20

0.40

0.60

0.80

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.10: Test accuracy over communication rounds for decentralized SL of experiment M5.

100 200 300 400 500 600 700 800 900
0.20

0.40

0.60

0.80

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.11: Test accuracy over communication rounds for decentralized FO of experiment M5.

When comparing the results of both approaches, two things stand out. On the one hand, decentralized
FO delivers very stable results early on and misses the target by a small margin. On the other hand,
decentralized SL performs significantly better overall, even if the intermediate results are unstable.

62

6.2 Experiments on CIFAR-10

In the case of decentralized SL, the experiment was successful in all rounds, and only about half as
many communication rounds were required at the same time (488 compared to 902.5). For the sake
of completeness, Table 6.3 shows the corresponding communication efforts. The effort for SecAvg
is a good 18 times higher than for decentralized SL.

#communication
rounds

#training
rounds

communication
effort per round

(in weights)

total
communication

effort (in weights)
Decentralized SL 488 488 6, 653, 480 3, 246, 898, 240
Decentralized FO
(no privacy)

902.5 4512.5 33, 267, 400 30, 023, 828, 500

Decentralized FO
(SecAvg)

902.5 4512.5 66, 534, 800 60, 047, 657, 000

Table 6.3: Comparison of the required effort of experiment M2, based on median results.

6.2 Experiments on CIFAR-10

The goal of all experiments was to achieve at least 70%2 accuracy within 500 communication
rounds. Each experiment was performed five times, which are then called Run1-Run5. Additionally,
the following parameters were used for all experiments:

• Party count: 5

• Optimizer: Adam

• Loss function: Categorical cross-entropy

• Learning rate: 0.0001

• Number of epochs: 1

• Batch size: 64

270% accuracy was achieved with the complete dataset and the applied model after 60 epochs on average.

63

6 Experiments

6.2.1 CIFAR-10 dataset

Figure 6.12: Upscaled example images from the CIFAR-10 dataset

The CIFAR-10 dataset was introduced in 2009 and is named after the Canadian Institute for Advanced
Research [70]. It consists of 60, 000 images (50, 000 for training and 10, 000 for testing). Each
image is 32x32 pixels in size, and, unlike MNIST, these are RGB images and, therefore, each image
has 3 channels. The number in CIFAR-10 describes the number of classes. There is also another
variation with 100 classes, the CIFAR-100.

6.2.2 The applied model

…

0
1

9…

Flatten

Convolution
Kernel: (3, 3)

Padding: same
Activation: ReLU

Convolution
Kernel: (3, 3)

Padding: same
Activation: ReLU

MaxPooling
Poolsize: (2, 2)
Dropout: (0.25)

Dense
Units: 512

Activation: ReLU
Dropout: (0.5)

Dense
Units: 10

Activation: So�tmax

(32, 32, 3) (32, 32, 32) (15, 15, 64) (6, 6, 64) (2304) (512) (10)(15, 15, 32)

MaxPooling
Poolsize: (2, 2)
Dropout: (0.25)

(30, 30, 32) (13, 13, 64)

Convolution
Kernel: (3, 3)

Padding: valid
Activation: ReLU

Convolution
Kernel: (3, 3)

Padding: valid
Activation: ReLU

Figure 6.13: The applied model

The model applied here is a small DNN for image recognition. It was taken from an example3 for
Keras. Strictly speaking, it consists of 18 layers, since the activation functions were modeled as
individual layers. Figure 6.13 shows a schematic representation of the model. The structure is similar
to the model in Section 6.1.2. Instead of one convolutional layer followed by a MaxPooling-layer,
two convolutional layers are combined with one MaxPooling-layer. Additionally, three Dropout-
layers, one after each MaxPooling-layer and one before the output layer, avoid overfitting. Even
though the four convolutional layers make it more complex than the model from Section 6.1, it has
good 400, 000 weights less with only 1, 250, 858 weights.

3https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

64

https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

6.2 Experiments on CIFAR-10

6.2.3 Experiment C1: IID data

Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

1,000

2,000

3,000

4,000

5,000
982 967 1016 1028 1015 993 1021 967 984 1027

981 1041 1037 1015 969 943 951 1051 1013 999

997 986 984 974 1033 1002 1011 988 1008 1017

1035 978 997 1000 992 1042 1025 954 973 1004

1005 1028 966 983 991 1020 992 1040 1022 953

class

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure 6.14: Dataset distribution for experiment C1.

This experiment again represents the simplest and optimal case. As shown in Figure 6.14, the data
distribution of the five involved parties is almost IID. It was achieved by shuffling the training data
and then distributing it among the parties. Each party received 1/5 of the total training data, i. e.
5, 000 annotated training images for each party.

A single party with 5, 000 images cannot achieve the goal of 70% accuracy under the described
conditions. Each party achieved about 58% accuracy during tests.

Figure 6.15 shows the accuracy curve for five experiments with decentralized SL. As can be seen,
this scenario‘s approach is appropriate, as all runs have reached the set target of 70% accuracy. The
individual experiment runs proceeded similarly, even if there were differences in the results. The
minimum number of communication rounds was 262 (Run2), the maximum was 318 (Run5), and
the median was 269.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.30

0.40

0.50

0.60

0.70

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.15: Test accuracy over communication rounds for decentralized SL of experiment C1.

65

6 Experiments

Figure 6.16 shows the results of experiments with decentralized FO. This approach is also suitable
for the described scenario since all runs have reached the set target. The minimum number of
communication rounds was 220 (Run3), the maximum was 255 (Run1), and the median was 234.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.30

0.40

0.50

0.60

0.70

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.16: Test accuracy over communication rounds for decentralized FO of experiment C1.

When comparing both approaches‘ results, it turns out that decentralized FO needs, on average,
35 communication rounds less. This difference is put into perspective when you consider the
communication effort (Table 6.4). The communication effort of one round with decentralized FO is
5 or 10 times as high as that of decentralized SL, depending on whether increased data privacy is
desired.

#communication
rounds

#training
rounds

communication
effort per round

(in weights)

total
communication

effort (in weights)
Decentralized SL 269 269 5, 003, 432 1, 345, 923, 208
Decentralized FO
(no privacy)

234 1, 170 25, 017, 160 5, 854, 015, 440

Decentralized FO
(SecAvg)

234 1, 170 50, 034, 320 11, 708, 030, 880

Table 6.4: Comparison of the required effort of experiment C1, based on median results.

66

6.2 Experiments on CIFAR-10

6.2.4 Experiment C2: non-IID data (5%)

Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

0

2,000

4,000

4000 40004000 40004000 40004000 40004000 4000

class

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure 6.17: Dataset distribution for experiment C2.

In this experiment, the data distribution is no longer IID. Each party has two main classes, of which
it has 4, 000 training images each and 250 training images (5%) from all other classes, as shown in
Figure 6.17.

Figure 6.18 shows the accuracy curve for the runs with decentralized SL. As can be seen, this
scenario‘s approach has reached about 60% accuracy, and therefore the goal of 70% accuracy was
not achieved. Each run performed almost identical.

Figure 6.18 shows the results of experiments with decentralized FO. The different runs performed
almost identically and achieved about 68% accuracy, narrowly missing the aimed 70% accuracy.

50 100 150 200 250 300 350 400 450 500

0.20

0.40

0.60

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.18: Test accuracy over communication rounds for decentralized SL of experiment C2.

67

6 Experiments

50 100 150 200 250 300 350 400 450 500

0.20

0.40

0.60

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.19: Test accuracy over communication rounds for decentralized FO of experiment C2.

6.2.5 Experiment C3: non-IID data (0%)

In this experiment, the most extreme distribution was chosen. The datasets are completely disjointed.
Thus, each party has the training data for only two classes and no information about the other classes.
With such a distribution, one party alone can reach a maximum of 20%.

Figure 6.20 shows the accuracy curve for five experiments with decentralized SL. As can be seen,
this approach is not suitable for the scenario, as the results show that the accuracy varies between
10% and 16%, and no real improvements can be achieved over time.

50 100 150 200 250 300 350 400 450 500
0.10

0.20

0.30

0.40

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1 Run2 Run3 Run4 Run5

Figure 6.20: Test accuracy over communication rounds for decentralized SL of experiment C3.

68

6.3 Experiments on Imagenette

Figure 6.21 shows the results of the experiments with decentralized FO. The results show that the
goal is not reached, but there are improvements over time. The accuracy improves from around
10% initially to over 40%, which is at least better than what one party could achieve on its own.

50 100 150 200 250 300 350 400 450 500
0.10

0.20

0.30

0.40

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3
Run4
Run5

Figure 6.21: Test accuracy over communication rounds for decentralized FO of experiment C3.

6.3 Experiments on Imagenette

This experiment‘s setup should show how well both approaches work with more complex models
and datasets. All experiments aimed to reach 75% accuracy as quickly as possible, with an upper
limit of 200 for communication rounds. To make the task more challenging, the difference in
accuracy between two consecutive (communication) rounds must be greater than 0.000001. Each
experiment was performed three times, which are then called Run1 - Run3. Additionally, the
following parameters were used for all experiments:

• Party count: 5

• Optimizer: Adam

• Learning rate: 0.001

• Loss function: Categorical cross-entropy

• Number of epochs: 1

• Batch size: 64

69

6 Experiments

6.3.1 Imagenette dataset

“The explosion of image data on the Internet has the potential to foster more sophisticated and
robust models and algorithms to index, retrieve, organize and interact with images and multimedia
data. But exactly how such data can be harnessed and organized remains a critical problem. We
introduce here a new database called “ImageNet”, a largescale ontology of images built upon the
backbone of the WordNet structure. ImageNet aims to populate the majority of the 80, 000 synsets4

of WordNet with an average of 500-1, 000 clean and full resolution images. This will result in tens
of millions of annotated images organized by the semantic hierarchy of WordNet.” [35]

Figure 6.22: Example images from the Imagenette dataset

identity

weight layer

weight layer

relu

relu
F (x) + x

x

F(x) x

Figure 6.23: Residual learning [60]

Currently, ImageNet contains more than 14 million
images in over 20, 000 synsets. Since the process-
ing of such data volumes takes a long time, Ima-
genette [63] was created. “Imagenette is a subset
of 10 easily classified classes from Imagenet (tench,
English springer, cassette player, chain saw, church,
French horn, garbage truck, gas pump, golf ball,
parachute).” [63] The version used here consists of
13, 394 color photos, divided into 9, 469 training im-
ages and 3, 925 validation images. This input data is
scaled so that the shortest side is 160 pixels long. Fig-
ure 6.22 shows one example of each category.

6.3.2 The applied model

The model used in this experiment is the so-called ResNet50. ResNet [60] stands for residual
(neural) network and is a so-called advanced CNN architecture, which refers to ready-made models.
The number at the end specifies the number of convolutional layers. Deeper nets have more weights
and potentially perform better.

4“Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a “synonym
set” or “synset”” [35]

70

6.3 Experiments on Imagenette

As mentioned in Section 2.1.3, the vanishing gradient problem in deep neural networks causes the
earlier layers to learn more and more slowly. ResNet uses deep residual learning as a countermeasure.
As shown in Figure 6.23, residual learning means that the input G will be forwarded and added to the
processed output � (G). Such skipped connections or shortcut connections mitigate the vanishing
gradient problem and ensure that the higher layers work at least as well as the lower layers [38].

The here used ResNet50 is not entirely identical to the original. It is the version provided by Keras,
which includes some additional newer insights. The model basically consists of two blocks, an
identity block (IdBlock) and a convolutional block (ConvBlock), configured with different numbers
of filters. From stage to stage, the used filters of the convolutional layers double.

Conv2D Batch
Norm ReLU Conv2D Batch

Norm ReLU Conv2D Batch
Norm ReLU+x

x (shortcut)

Figure 6.24: ResNet50 identity block [38]

Figure 6.24 shows such an IdBlock. As you can see, there is a short way and a main way. The main
path‘s convolutional layers use a 1x1 kernel for the first and last layer and a 3x3 kernel in the second
layer, where each layer has a stride of (1, 1). The value of G is added to the result before the last
ReLU function.

Conv2D Batch
Norm ReLU Conv2D Batch

Norm ReLU Conv2D Batch
Norm ReLU+x

x (shortcut)

Conv2D Batch
Norm

Figure 6.25: ResNet50 convolution block [38]

The ConvBlock is similar to the IdBlock, but as shown in Figure 6.25, the shortcut also has a
convolutional layer and batch normalization. This block is needed whenever the dimensions of
input and output tensor are not equal, which is then adjusted by the convolution. Additionally,
it is noticeable that the shortcut does not contain any non-linear activation function. Therefore,
the shortcut‘s main task is to apply a learned linear function, which reduces the input tensor‘s
dimension to the output tensor‘s dimension. The used kernel sizes are identical to those of the
IdBlock, only the used stride of the first layer is (2, 2), which results in a halving of the dimension.
The parameterization of the shortcut is identical to the first layer of the main path.

With these block‘ help, the used model can now be represented schematically, as shown in Figure 6.26.
When recounting, one will notice that this model has 49 or 53 convolutional layers, depending on
whether one considers only the main path or all paths. This is because the original ResNet in stage
1 contained another convolutional layer, and only IdBlocks were used.

71

6 Experiments

C
o
n
v
2
D

Batch
Norm ReLU Max

Pool
Zero
Pad

input Conv
Block

ID
Block

x2

Conv
Block

ID
Block

x3

Conv
Block

ID
Block

x5

Conv
Block

ID
Block

x2

Avg
Pool

F
l
a
t
t
e
n

D
e
n
s
e

stage 1 stage 2 stage 3 stage 4 stage 5

output

Figure 6.26: ResNet50 [38]

The original ResNet was designed for the ImageNet dataset, which resulted in the last layer being a
Dense layer with 1, 000 units since ImageNet has 1, 000 classes. Since Imagenette contains only 10
classes, a dense layer with 10 units is used. The version of ResNet50 described here has 23, 608, 202
weights, of which 23, 555, 082 can be trained.

The ResNet expects an input tensor of the form (224, 224, 3), Imagenette images were resized
accordingly. This can cause image distortions.

6.3.3 Experiment I1: IID data

This experiment again represents the simplest and most optimal case. The data distribution of the
five involved parties is IID. This distribution again was achieved by shuffling the training data and
then distributing it among the parties. Each party received 1/5 of the total training data, i. e. about
1, 900 annotated training images for each party.

It has been found that a single party is unable to achieve the goal of 75% accuracy under the
described conditions. In the best case, the accuracy was 63%, and on average, about 59% accuracy.
The experiments were terminated after an average of 49 rounds, as the difference between two
results was then too small.

20 40 60 80 100 120 140 160 180 200

0.20

0.40

0.60

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3

Figure 6.27: Test accuracy over communication rounds for decentralized SL of experiment I1.

72

6.3 Experiments on Imagenette

Figure 6.27 shows the accuracy curve for three experiments with decentralized SL. As can be seen,
this scenario‘s approach is not appropriate, as no run has reached the set target of 75% accuracy.
The best result was just below 70% accuracy, which is at least better than one party alone could
achieve.

20 40 60 80 100 120 140 160 180 200

0.20

0.40

0.60

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1
Run2
Run3

Figure 6.28: Test accuracy over communication rounds for decentralized FO of experiment I1.

Figure 6.28 shows the results of the three experiment runs with decentralized FO. This approach is
appropriate in this scenario, as all runs have reached the set target. It even turned out that all runs
were over after 83 communication rounds at the latest, so the set goal was achieved after less than
half of the available communication rounds, in the best case, even in a quarter.

The comparison of both approaches is not necessary for these results. Decentralized FO has achieved
the set goal, in contrast to decentralized SL.

6.3.4 Experiment I2: non-IID data (0%)

In this experiment, the most extreme distribution was chosen. The datasets are completely disjointed.
Thus, each party has only two classes‘ training data and no other classes‘ information.

Since decentralized SL could not achieve satisfactory results, even with optimal distribution of the
training data, this experiment was performed exclusively with decentralized FO. Due to technical
difficulties, the experiment was performed only once. As shown in Figure 6.29, the results obtained
ranged from 8% to 14.7%, although they were mostly in the region of about 10%.

Thus decentralized FO and probably every other known approach for federated learning is not able
to achieve the set goal under the conditions chosen here.

73

6 Experiments

20 40 60 80 100 120 140 160 180
0.08

0.10

0.12

0.14

Communication Rounds

Te
st

A
cc

ur
ac

y

Run1

Figure 6.29: Test accuracy over communication rounds for decentralized FO of experiment I2.

74

7 Conclusion and Outlook

Federated learning with a decentralized communication model is possible, as was shown in this
thesis with two different approaches. The experiments showed that even with extreme input data
distribution, good results were achieved. Compared to the server-based approaches, it is not the best
choice for hundreds or even thousands of parties due to the inherently higher communication efforts
for decentralized communication models. However, for a low or medium double-digit number of
parties, it could be the right solution, because then all parties are equal and no one has advantages
over the others.

Besides private FO1, SecAvg provides a much higher privacy level than other federated learning
approaches. Thus all requirements for the initially mentioned application scenario, banks training a
common model for credit card fraud detection, are fulfilled when using SecAvg.

Although semi-honest security as the chosen security model for SecAvg offers no protection against
malicious adversaries who send fake values, this poses no threat in the intended main application
scenario, creating a common model by parties who have a high interest in a valid result. An
attack on SecAvg would not give the attacker any advantage but will instead sabotage the entire
project. However, this sabotage could be noted since the results of the created model would not be
satisfying.

The experiments show that decentralized SL, i. e. the successive training of a model with different
datasets, can achieve excellent and communication-efficient results with IID data and little data
privacy compared to SecAvg. Perhaps it is possible to combine both methods for this application by
creating a kind of equality of weapons in the first rounds with the help of SecAvg, and then to train
more communication-efficiently with decentralized SL afterward.

Only the basic version of federated optimization has been considered. Recently FO has been
extended by adaptive federated optimization [90]. For aggregation, not only the mean value is used
there, but, depending on which optimization method is used, other aggregate functions. Adaptive
optimization can lead to better results in less time, and therefore, it is of interest for the decentralized
case to convert the algorithms into corresponding MPC versions.

To compensate for the loss of a few parties during a training round, a change to a (k, n) secret sharing
scheme could be advantageous in the future. Another possibility for future developments is data
distribution. Only balanced datasets, i. e. datasets with comparable scope and quality, have been
considered. When looking at unbalanced data, one could work with weighted sums to determine the
mean values. Nevertheless, for this to be possible, a trustworthy procedure is needed to determine a
measure of quality and scope.

1Differential privacy has further process-related disadvantages, especially with small datasets [86].

75

7 Conclusion and Outlook

In this thesis, possible approaches were primarily considered as core elements for decentralized
communication protocols for federated learning. However, it has to be determined how the first
model for the training is created and distributed for the specification of such protocols. Furthermore,
mechanisms for changing the group‘s composition and possibilities for commitment to participate
in a round are missing. The number of participant parties per round must be known before a round
starts due to the MPC protocol.

76

Bibliography

[1] U. Aïvodji, S. Gambs, T. Ther. GAMIN: An Adversarial Approach to Black-Box Model
Inversion. 2019. arXiv: 1909.11835 [cs.LG] (cit. on pp. 45, 46, 49).

[2] G. Andrew, S. Chien, N. Papernot. tenorflow/privacy: Library for training machine learning
models with privacy for training data. 2019. url: https://github.com/tensorflow/privacy
(cit. on p. 42).

[3] B. Applebaum, Y. Ishai, E. Kushilevitz. “How to Garble Arithmetic Circuits”. In: 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science. IEEE, Oct. 2011. doi:
10.1109/focs.2011.40 (cit. on p. 29).

[4] M. Awad, R. Khanna. “Machine Learning”. In: Efficient Learning Machines: Theories,
Concepts, and Applications for Engineers and System Designers. Berkeley, CA: Apress,
2015, pp. 1–18. isbn: 978-1-4302-5990-9. doi: 10.1007/978-1-4302-5990-9_1. url:
https://doi.org/10.1007/978-1-4302-5990-9_1 (cit. on p. 16).

[5] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, S. Carlsson. “From generic to specific
deep representations for visual recognition”. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). IEEE, June 2015. doi: 10.1109/cvprw.
2015.7301270 (cit. on p. 44).

[6] L. J. Ba, R. Caruana. “Do Deep Nets Really Need to be Deep?” In: CoRR abs/1312.6184
(2013). arXiv: 1312.6184. url: http://arxiv.org/abs/1312.6184 (cit. on p. 20).

[7] M. Backes, B. Pfitzmann, M. Waidner. “A General Composition Theorem for Secure
Reactive Systems”. In: Theory of Cryptography. Springer Berlin Heidelberg, 2004, pp. 336–
354. doi: 10.1007/978-3-540-24638-1_19 (cit. on p. 33).

[8] S. Badrinarayanan, A. Jain, N. Manohar, A. Sahai. Threshold Multi-Key FHE and Appli-
cations to Round-Optimal MPC. Cryptology ePrint Archive, Report 2018/580. https:
//eprint.iacr.org/2018/580. 2018 (cit. on p. 32).

[9] D. Beaver, S. Micali, P. Rogaway. “The round complexity of secure protocols”. In: Proceed-
ings of the twenty-second annual ACM symposium on Theory of computing - STOC ’90.
ACM Press, 1990. doi: 10.1145/100216.100287 (cit. on p. 29).

[10] Z. Beerliová-Trubíniová, M. Fitzi, M. Hirt, U. Maurer, V. Zikas. “MPC vs. SFE: Perfect
Security in a Unified Corruption Model”. In: Theory of Cryptography. Ed. by R. Canetti.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 231–250. isbn: 978-3-540-78524-
8 (cit. on p. 27).

[11] R. Bekkerman, M. Bilenko, J. Langford, eds. Scaling Up Machine Learning. Cambridge
University Press, 2009. doi: 10.1017/cbo9781139042918 (cit. on p. 36).

[12] M. Bellare, P. Rogaway. “Optimal asymmetric encryption”. In: Advances in Cryptology
— EUROCRYPT’94. Ed. by A. De Santis. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 92–111. isbn: 978-3-540-44717-7 (cit. on p. 31).

77

https://arxiv.org/abs/1909.11835
https://github.com/tensorflow/privacy
https://doi.org/10.1109/focs.2011.40
https://doi.org/10.1007/978-1-4302-5990-9_1
https://doi.org/10.1007/978-1-4302-5990-9_1
https://doi.org/10.1109/cvprw.2015.7301270
https://doi.org/10.1109/cvprw.2015.7301270
https://arxiv.org/abs/1312.6184
http://arxiv.org/abs/1312.6184
https://doi.org/10.1007/978-3-540-24638-1_19
https://eprint.iacr.org/2018/580
https://eprint.iacr.org/2018/580
https://doi.org/10.1145/100216.100287
https://doi.org/10.1017/cbo9781139042918

Bibliography

[13] T. Ben-Nun, T. Hoefler. Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis. 2018. arXiv: 1802.09941 [cs.LG] (cit. on p. 38).

[14] P. Bhavsar, I. Safro, N. Bouaynaya, R. Polikar, D. Dera. “Chapter 12 - Machine Learning in
Transportation Data Analytics”. In: Data Analytics for Intelligent Transportation Systems.
Ed. by M. Chowdhury, A. Apon, K. Dey. Elsevier, 2017, pp. 283–307. isbn: 978-0-12-
809715-1. doi: https://doi.org/10.1016/B978-0-12-809715-1.00012-2. url: http:
//www.sciencedirect.com/science/article/pii/B9780128097151000122 (cit. on p. 16).

[15] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, R. Rogers. Protection Against Reconstruc-
tion and Its Applications in Private Federated Learning. 2018. arXiv: 1812.00984 [stat.ML]

(cit. on pp. 42, 49).
[16] G. R. Blakley. “Safeguarding cryptographic keys”. In: Managing Requirements Knowledge,

International Workshop on. Los Alamitos, CA, USA: IEEE Computer Society, June 1979,
p. 313. doi: 10.1109/AFIPS.1979.98. url: https://doi.ieeecomputersociety.org/10.
1109/AFIPS.1979.98 (cit. on p. 27).

[17] D. Boneh, A. Sahai, B. Waters. “Functional Encryption: Definitions and Challenges”. In:
Theory of Cryptography. Ed. by Y. Ishai. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 253–273. isbn: 978-3-642-19571-6 (cit. on p. 32).

[18] J. W. Bos, K. Lauter, J. Loftus, M. Naehrig. Improved Security for a Ring-Based Fully
Homomorphic Encryption Scheme. Cryptology ePrint Archive, Report 2013/075. https:
//eprint.iacr.org/2013/075. 2013 (cit. on p. 31).

[19] B. E. Boser, I. M. Guyon, V. N. Vapnik. “A training algorithm for optimal margin classifiers”.
In: Proceedings of the fifth annual workshop on Computational learning theory - COLT
’92. ACM Press, 1992. doi: 10.1145/130385.130401 (cit. on p. 17).

[20] Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. Cryptology ePrint Archive, Report 2012/078. https://eprint.iacr.org/2012/078.
2012 (cit. on p. 31).

[21] Z. Brakerski, C. Gentry, V. Vaikuntanathan. Fully Homomorphic Encryption without Boot-
strapping. Cryptology ePrint Archive, Report 2011/277. https://eprint.iacr.org/2011/
277. 2011 (cit. on p. 31).

[22] Z. Brakerski, V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard)
LWE. Cryptology ePrint Archive, Report 2011/344. https://eprint.iacr.org/2011/344.
2011 (cit. on p. 31).

[23] G. Brassard, D. Chaum, C. Crépeau. “Minimum disclosure proofs of knowledge”. In: Journal
of Computer and System Sciences 37.2 (Oct. 1988), pp. 156–189. doi: 10.1016/0022-
0000(88)90005-0 (cit. on p. 28).

[24] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone. Classification and regression trees.
The Wadsworth statistics/probability series. Monterey, CA: Wadsworth & Brooks/Cole
Advanced Books & Software, 1984. url: https://cds.cern.ch/record/2253780 (cit. on
p. 17).

[25] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl,
N. P. Smart. High Performance Multi-Party Computation for Binary Circuits Based on
Oblivious Transfer. Cryptology ePrint Archive, Report 2015/472. https://eprint.iacr.
org/2015/472. 2015 (cit. on p. 28).

78

https://arxiv.org/abs/1802.09941
https://doi.org/https://doi.org/10.1016/B978-0-12-809715-1.00012-2
http://www.sciencedirect.com/science/article/pii/B9780128097151000122
http://www.sciencedirect.com/science/article/pii/B9780128097151000122
https://arxiv.org/abs/1812.00984
https://doi.org/10.1109/AFIPS.1979.98
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98
https://eprint.iacr.org/2013/075
https://eprint.iacr.org/2013/075
https://doi.org/10.1145/130385.130401
https://eprint.iacr.org/2012/078
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/344
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://cds.cern.ch/record/2253780
https://eprint.iacr.org/2015/472
https://eprint.iacr.org/2015/472

Bibliography

[26] M. Chen, R. Mathews, T. Ouyang, F. Beaufays. Federated Learning Of Out-Of-Vocabulary
Words. 2019. arXiv: 1903.10635 [cs.CL] (cit. on p. 41).

[27] Y. Chen, X. Sun, Y. Jin. “Communication-Efficient Federated Deep Learning with Asyn-
chronous Model Update and Temporally Weighted Aggregation”. In: CoRR abs/1903.07424
(2019). arXiv: 1903.07424. url: http://arxiv.org/abs/1903.07424 (cit. on p. 41).

[28] J. H. Cheon, A. Kim, M. Kim, Y. Song. “Homomorphic Encryption for Arithmetic of
Approximate Numbers”. In: Advances in Cryptology – ASIACRYPT 2017. Springer Inter-
national Publishing, 2017, pp. 409–437. doi: 10.1007/978-3-319-70694-8_15 (cit. on
p. 31).

[29] F. Chollet. Deep Learning with Python. Manning, 2017 (cit. on pp. 15, 17, 18, 26).
[30] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. “Verifiable secret sharing and achieving

simultaneity in the presence of faults”. In: 26th Annual Symposium on Foundations of
Computer Science (sfcs 1985). IEEE, 1985. doi: 10.1109/sfcs.1985.64 (cit. on p. 28).

[31] J. Chotard, E. D. Sans, R. Gay, D. H. Phan, D. Pointcheval. “Decentralized multi-client
functional encryption for inner product”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2018, pp. 703–732 (cit. on
p. 32).

[32] T. Chou, C. Orlandi. “The Simplest Protocol for Oblivious Transfer”. In: Progress in
Cryptology – LATINCRYPT 2015. Springer International Publishing, 2015, pp. 40–58. doi:
10.1007/978-3-319-22174-8_3 (cit. on pp. 28–30).

[33] C.-t. Chu, S. K. Kim, Y.-a. Lin, Y. Yu, G. Bradski, K. Olukotun, A. Y. Ng. “Map-Reduce for
Machine Learning on Multicore”. In: Advances in Neural Information Processing Systems
19. Ed. by B. Schölkopf, J. C. Platt, T. Hoffman. MIT Press, 2007, pp. 281–288. url:
http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf

(cit. on p. 37).
[34] DeepSpeed. DeepSpeed. 2020. url: https://www.deepspeed.ai/ (cit. on p. 38).
[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. “ImageNet: A large-scale hierarchical

image database”. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, June 2009. doi: 10.1109/cvpr.2009.5206848 (cit. on p. 70).

[36] W. Diffie, M. Hellman. “New directions in cryptography”. In: IEEE Transactions on Infor-
mation Theory 22.6 (Nov. 1976), pp. 644–654. doi: 10.1109/tit.1976.1055638 (cit. on
pp. 29, 32).

[37] P. Domingos. “A few useful things to know about machine learning”. In: Communications
of the ACM 55.10 (Oct. 2012), pp. 78–87. doi: 10.1145/2347736.2347755 (cit. on p. 13).

[38] P. Dwivedi. Understanding and Coding a ResNet in Keras. Apr. 1, 2019. url: https:
//towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

(cit. on pp. 71, 72).
[39] C. Dwork. “Differential Privacy”. In: Automata, Languages and Programming. Ed. by

M. Bugliesi, B. Preneel, V. Sassone, I. Wegener. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2006, pp. 1–12. isbn: 978-3-540-35908-1 (cit. on p. 42).

[40] C. Dwork, F. McSherry, K. Nissim, A. Smith. “Calibrating Noise to Sensitivity in Private
Data Analysis”. In: Theory of Cryptography. Springer Berlin Heidelberg, 2006, pp. 265–284.
doi: 10.1007/11681878_14 (cit. on p. 42).

79

https://arxiv.org/abs/1903.10635
https://arxiv.org/abs/1903.07424
http://arxiv.org/abs/1903.07424
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1109/sfcs.1985.64
https://doi.org/10.1007/978-3-319-22174-8_3
http://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf
https://www.deepspeed.ai/
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1145/2347736.2347755
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33
https://doi.org/10.1007/11681878_14

Bibliography

[41] T. Elgamal. “A public key cryptosystem and a signature scheme based on discrete loga-
rithms”. In: IEEE Transactions on Information Theory 31.4 (July 1985), pp. 469–472. doi:
10.1109/tit.1985.1057074 (cit. on p. 31).

[42] D. Evans, V. Kolesnikov, M. Rosulek. “A Pragmatic Introduction to Secure Multi-Party
Computation”. In: Foundations and Trends® in Privacy and Security 2.2-3 (2018), pp. 70–
246. doi: 10.1561/3300000019 (cit. on pp. 30, 32, 33).

[43] S. Even, O. Goldreich, A. Lempel. “A Randomized Protocol for Signing Contracts”. In:
Advances in Cryptology. Ed. by D. Chaum, R. L. Rivest, A. T. Sherman. Boston, MA:
Springer US, 1983, pp. 205–210. isbn: 978-1-4757-0602-4 (cit. on p. 28).

[44] Facebook. PyTorch. 2020. url: https://pytorch.org/ (cit. on p. 38).
[45] J. Fan, F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology

ePrint Archive, Report 2012/144. https://eprint.iacr.org/2012/144. 2012 (cit. on p. 31).
[46] E. W. Forgy. “Cluster analysis of multivariate data: efficiency versus interpretability of

classifications.” In: Biometrics 21.3 (1965), pp. 761–777. issn: 0006341X, 15410420. url:
http://www.jstor.org/stable/2528559 (cit. on p. 16).

[47] J. Freudiger, M. Xue. Designing for Privacy - WWDC 2019. June 5, 2019. url: https:
//developer.apple.com/videos/play/wwdc2019/708/ (cit. on p. 13).

[48] C. Gentry. “Computing arbitrary functions of encrypted data”. In: Communications of the
ACM 53.3 (Mar. 2010), pp. 97–105. doi: 10.1145/1666420.1666444 (cit. on p. 31).

[49] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the 41st
annual ACM symposium on Symposium on theory of computing - STOC ’09. ACM Press,
2009. doi: 10.1145/1536414.1536440 (cit. on p. 31).

[50] C. Gentry, S. Halevi. Implementing Gentry’s Fully-Homomorphic Encryption Scheme.
Cryptology ePrint Archive, Report 2010/520. https://eprint.iacr.org/2010/520. 2010
(cit. on p. 31).

[51] O. Goldreich, S. Micali, A. Wigderson. “How to play ANY mental game”. In: Proceedings
of the nineteenth annual ACM conference on Theory of computing - STOC ’87. ACM Press,
1987. doi: 10.1145/28395.28420 (cit. on p. 29).

[52] O. Goldreich. “Cryptography and cryptographic protocols”. In: Distributed Computing
16.2-3 (Sept. 2003), pp. 177–199. doi: 10.1007/s00446-002-0077-1 (cit. on p. 29).

[53] S. Goldwasser, V. Goyal, A. Jain, A. Sahai. Multi-Input Functional Encryption. Cryptology
ePrint Archive, Report 2013/727. https://eprint.iacr.org/2013/727. 2013 (cit. on p. 32).

[54] S. Goldwasser, S. Micali. “Probabilistic encryption”. In: Journal of Computer and System
Sciences 28.2 (Apr. 1984), pp. 270–299. doi: 10.1016/0022-0000(84)90070-9 (cit. on p. 33).

[55] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016 (cit. on pp. 22, 23).

[56] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, H.-S. Zhou. Multi-Input Functional Encryption.
Cryptology ePrint Archive, Report 2013/774. https://eprint.iacr.org/2013/774. 2013
(cit. on p. 32).

[57] O. Gupta, R. Raskar. “Distributed learning of deep neural network over multiple agents”.
In: Journal of Network and Computer Applications 116 (Aug. 2018), pp. 1–8. doi: 10.1016/
j.jnca.2018.05.003 (cit. on p. 39).

80

https://doi.org/10.1109/tit.1985.1057074
https://doi.org/10.1561/3300000019
https://pytorch.org/
https://eprint.iacr.org/2012/144
http://www.jstor.org/stable/2528559
https://developer.apple.com/videos/play/wwdc2019/708/
https://developer.apple.com/videos/play/wwdc2019/708/
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/2010/520
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/s00446-002-0077-1
https://eprint.iacr.org/2013/727
https://doi.org/10.1016/0022-0000(84)90070-9
http://www.deeplearningbook.org
https://eprint.iacr.org/2013/774
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1016/j.jnca.2018.05.003

Bibliography

[58] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, D. Ramage.
“Federated Learning for Mobile Keyboard Prediction”. In: CoRR abs/1811.03604 (2018).
arXiv: 1811.03604. url: http://arxiv.org/abs/1811.03604 (cit. on pp. 13, 41).

[59] L. Harn, C. Lin. “Strong (n, t, n) verifiable secret sharing scheme”. In: Information Sciences
180.16 (2010), pp. 3059–3064 (cit. on p. 28).

[60] K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV] (cit. on p. 70).

[61] R. Hecht-Nielsen. “Kolmogorov”s Mapping Neural Network Existence Theorem”. In: 1987
(cit. on p. 20).

[62] J. Hempel. Melinda Gates and Fei-Fei Li Want to Liberate AI from ”Guys With Hoodies”.
May 4, 2017. url: https://www.wired.com/2017/05/melinda-gates-and-fei-fei-li-want-
to-liberate-ai-from-guys-with-hoodies/ (cit. on p. 13).

[63] J. Howard. Imagenette. url: https://github.com/fastai/imagenette/ (cit. on p. 70).
[64] S. Ioffe, C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG] (cit. on p. 25).
[65] J. Kilian. “Founding crytpography on oblivious transfer”. In: Proceedings of the twentieth

annual ACM symposium on Theory of computing - STOC ’88. ACM Press, 1988. doi:
10.1145/62212.62215 (cit. on p. 28).

[66] A. N. Kolmogorov. “On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition”. In: Dokl. Akad. Nauk
SSSR (June 20, 1957) (cit. on p. 20).

[67] J. Konecný, H. B. McMahan, D. Ramage, P. Richtárik. “Federated Optimization: Distributed
Machine Learning for On-Device Intelligence”. In: CoRR abs/1610.02527 (2016). arXiv:
1610.02527. url: http://arxiv.org/abs/1610.02527 (cit. on p. 41).

[68] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon. “Federated
Learning: Strategies for Improving Communication Efficiency”. In: CoRR abs/1610.05492
(2016). arXiv: 1610.05492. url: http://arxiv.org/abs/1610.05492 (cit. on p. 41).

[69] J. Konečný, B. McMahan, D. Ramage. Federated Optimization:Distributed Optimization
Beyond the Datacenter. 2015. arXiv: 1511.03575 [cs.LG] (cit. on pp. 13, 41).

[70] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny images”. In:
(2009) (cit. on p. 64).

[71] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.
726791 (cit. on p. 56).

[72] Y. LeCun. “Generalization and network design strategies”. In: Technical Report CRG-TR-
89-4, University of Toronto (1989) (cit. on p. 22).

[73] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (Mar. 1982), pp. 129–137. doi: 10.1109/tit.1982.1056489 (cit. on p. 16).

[74] A. Lopez-Alt, E. Tromer, V. Vaikuntanathan. On-the-Fly Multiparty Computation on the
Cloud via Multikey Fully Homomorphic Encryption. Cryptology ePrint Archive, Report
2013/094. https://eprint.iacr.org/2013/094. 2013 (cit. on pp. 31, 32).

81

https://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1512.03385
https://www.wired.com/2017/05/melinda-gates-and-fei-fei-li-want-to-liberate-ai-from-guys-with-hoodies/
https://www.wired.com/2017/05/melinda-gates-and-fei-fei-li-want-to-liberate-ai-from-guys-with-hoodies/
https://github.com/fastai/imagenette/
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/62212.62215
https://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1610.02527
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1511.03575
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/tit.1982.1056489
https://eprint.iacr.org/2013/094

Bibliography

[75] J. MacQueen. “Some methods for classification and analysis of multivariate observations”.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics. Berkeley, Calif.: University of California Press, 1967, pp. 281–297.
url: https://projecteuclid.org/euclid.bsmsp/1200512992 (cit. on p. 16).

[76] E. Makri. CO6GC: LINEAR SECRET SHARING SCHEMES – LSSS | COSIC. Apr. 17,
2020. url: https://www.esat.kuleuven.be/cosic/blog/lsss/ (cit. on pp. 28, 47).

[77] G. Mann, R. McDonald, M. Mohri, N. Silberman, D. W. IV. “Efficient Large-Scale Distrib-
uted Training of Conditional Maximum Entropy Models”. In: Neural Information Processing
Systems (NIPS). 2009 (cit. on pp. 36, 37).

[78] J. McCarthy, M. L. Minsky, N. Rochester, C. E. Shannon. A PROPOSAL FOR THE DART-
MOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE. Aug. 31,
1955. url: http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
(cit. on p. 15).

[79] W. S. McCulloch, W. Pitts. “A logical calculus of the ideas immanent in nervous activity”.
In: The Bulletin of Mathematical Biophysics 5.4 (Dec. 1943), pp. 115–133. doi: 10.1007/
bf02478259 (cit. on pp. 16–18).

[80] H. B. McMahan, G. Andrew. “A General Approach to Adding Differential Privacy to
Iterative Training Procedures”. In: CoRR abs/1812.06210 (2018). arXiv: 1812.06210. url:
http://arxiv.org/abs/1812.06210 (cit. on p. 42).

[81] H. B. McMahan, E. Moore, D. Ramage, B. A. y Arcas. “Federated Learning of Deep
Networks using Model Averaging”. In: CoRR abs/1602.05629 (2016). arXiv: 1602.05629.
url: http://arxiv.org/abs/1602.05629 (cit. on pp. 41, 56).

[82] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. 2016. arXiv: 1602.05629
[cs.LG] (cit. on p. 41).

[83] Merriam-Webster.com. Cluster Analysis | Definition of Cluster Analysis by Merriam-Webster.
Aug. 1, 2020. url: https://www.merriam-webster.com/dictionary/cluster%20analysis
(cit. on p. 16).

[84] S. Micali, P. Rogaway. “Secure Computation”. In: Advances in Cryptology — CRYPTO ’91.
Springer Berlin Heidelberg, 1991, pp. 392–404. doi: 10.1007/3-540-46766-1_32 (cit. on
p. 27).

[85] J. B. Nielsen, P. S. Nordholt, C. Orlandi, S. S. Burra. “A New Approach to Practical Active-
Secure Two-Party Computation”. In: Advances in Cryptology – CRYPTO 2012. Ed. by
R. Safavi-Naini, R. Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 681–
700. isbn: 978-3-642-32009-5 (cit. on p. 28).

[86] N. H. Phan, X. Wu, D. Dou. “Preserving Differential Privacy in Convolutional Deep Belief
Networks”. In: (June 2017) (cit. on p. 75).

[87] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, R. Raskar. Split
Learning for collaborative deep learning in healthcare. 2019. arXiv: 1912.12115 [cs.LG]

(cit. on p. 39).

82

https://projecteuclid.org/euclid.bsmsp/1200512992
https://www.esat.kuleuven.be/cosic/blog/lsss/
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://arxiv.org/abs/1812.06210
http://arxiv.org/abs/1812.06210
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://www.merriam-webster.com/dictionary/cluster%20analysis
https://doi.org/10.1007/3-540-46766-1_32
https://arxiv.org/abs/1912.12115

Bibliography

[88] S. Rajbhandari, J. Rasley, O. Ruwase, Y. He. ZeRO: Memory Optimizations Toward Training
Trillion Parameter Models. ArXiv. May 2020. url: https://www.microsoft.com/en-
us/research/publication/zero-memory-optimizations-toward-training-trillion-

parameter-models/ (cit. on pp. 37, 38).
[89] S. Ramaswamy, R. Mathews, K. Rao, F. Beaufays. “Federated Learning for Emoji Prediction

in a Mobile Keyboard”. In: CoRR abs/1906.04329 (2019). arXiv: 1906.04329. url: http:
//arxiv.org/abs/1906.04329 (cit. on pp. 13, 41).

[90] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, H. B. McMahan.
Adaptive Federated Optimization. 2020. arXiv: 2003.00295 [cs.LG] (cit. on pp. 42, 75).

[91] R. L. Rivest, L. Adleman, M. L. Dertouzos. “On Data Banks and Privacy Homomorphisms”.
In: Foundations of Secure Computation, Academia Press (1978), pp. 169–179 (cit. on p. 31).

[92] R. L. Rivest, A. Shamir, L. Adleman. “A method for obtaining digital signatures and public-
key cryptosystems”. In: Communications of the ACM 21.2 (Feb. 1978), pp. 120–126. doi:
10.1145/359340.359342 (cit. on pp. 31, 32).

[93] G. Rometty, J. W. Owens, R. N. Haass. A Conversation with Ginni Rometty. Mar. 7, 2013.
url: https://www.youtube.com/watch?v=SUoCHC-i7_o (cit. on p. 13).

[94] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organiza-
tion in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408. doi: 10.1037/h0042519
(cit. on pp. 16, 18).

[95] C. Rosset. Turing-NLG: A 17-billion-parameter language model by Microsoft. Feb. 13,
2020. url: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-
parameter-language-model-by-microsoft/ (cit. on p. 35).

[96] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning representations by back-
propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–536. doi: 10.1038/323533a0
(cit. on p. 19).

[97] A. L. Samuel. “Some studies in machine learning using the game of Checkers”. In: IBM
JOURNAL OF RESEARCH AND DEVELOPMENT (1959), pp. 71–105 (cit. on p. 16).

[98] A. Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (Nov. 1979),
pp. 612–613. doi: 10.1145/359168.359176 (cit. on pp. 27, 28).

[99] M. Simon, E. Rodner, J. Denzler. ImageNet pre-trained models with batch normalization.
2016. arXiv: 1612.01452 [cs.CV] (cit. on p. 44).

[100] A. Singh, P. Vepakomma, O. Gupta, R. Raskar. Detailed comparison of communication
efficiency of split learning and federated learning. 2019. arXiv: 1909.09145 [cs.LG] (cit. on
p. 40).

[101] H. Steinhaus. “Sur la division des corps matériels en parties”. In: Bulletin de l’Académie
Polonaise des Sciences Cl. III — Vol. IV.12 (1956), pp. 801–804 (cit. on p. 16).

[102] G. J. Székely, M. L. Rizzo, N. K. Bakirov. “Measuring and testing dependence by correlation
of distances”. In: The Annals of Statistics 35.6 (Dec. 2007), pp. 2769–2794. issn: 0090-5364.
doi: 10.1214/009053607000000505. url: http://dx.doi.org/10.1214/009053607000000505
(cit. on p. 40).

[103] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu. A Survey on Deep Transfer Learning.
2018. arXiv: 1808.01974 [cs.LG] (cit. on p. 44).

83

https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://arxiv.org/abs/1906.04329
http://arxiv.org/abs/1906.04329
http://arxiv.org/abs/1906.04329
https://arxiv.org/abs/2003.00295
https://doi.org/10.1145/359340.359342
https://www.youtube.com/watch?v=SUoCHC-i7_o
https://doi.org/10.1037/h0042519
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://doi.org/10.1038/323533a0
https://doi.org/10.1145/359168.359176
https://arxiv.org/abs/1612.01452
https://arxiv.org/abs/1909.09145
https://doi.org/10.1214/009053607000000505
http://dx.doi.org/10.1214/009053607000000505
https://arxiv.org/abs/1808.01974

Bibliography

[104] tensorflow. tf.keras.Model | TensorFlow Core v2.3.0. 2020. url: https://www.tensorflow.
org/api_docs/python/tf/keras/Model (cit. on p. 56).

[105] P. Vepakomma, O. Gupta, A. Dubey, R. Raskar. “REDUCING LEAKAGE IN DISTRIB-
UTED DEEP LEARNING FOR SENSITIVE HEALTH DATA”. In: 2019 (cit. on pp. 39,
40).

[106] P. Vepakomma, O. Gupta, T. Swedish, R. Raskar. “Split learning for health: Distributed
deep learning without sharing raw patient data”. In: CoRR abs/1812.00564 (2018). arXiv:
1812.00564. url: http://arxiv.org/abs/1812.00564 (cit. on pp. 39, 40).

[107] M. M. Waldrop. “News Feature: What are the limits of deep learning?” In: Proceedings of
the National Academy of Sciences 116.4 (Jan. 2019), pp. 1074–1077. doi: 10.1073/pnas.
1821594116 (cit. on p. 20).

[108] J. Weizenbaum. “ELIZA—a Computer Program for the Study of Natural Language Commu-
nication between Man and Machine”. In: Commun. ACM 9.1 (Jan. 1966), pp. 36–45. issn:
0001-0782. doi: 10.1145/365153.365168. url: https://doi.org/10.1145/365153.365168
(cit. on p. 15).

[109] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, F. Beaufays. Applied
Federated Learning: Improving Google Keyboard Query Suggestions. 2018. arXiv: 1812.
02903 [cs.LG] (cit. on p. 13).

[110] A. C. Yao. “Protocols for secure computations”. In: 23rd Annual Symposium on Foundations
of Computer Science (sfcs 1982). IEEE, Nov. 1982. doi: 10.1109/sfcs.1982.38 (cit. on
p. 27).

[111] A. C.-C. Yao. “How to generate and exchange secrets”. In: 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986). IEEE, Oct. 1986. doi: 10.1109/sfcs.1986.25
(cit. on pp. 29, 30).

84

https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://arxiv.org/abs/1812.00564
http://arxiv.org/abs/1812.00564
https://doi.org/10.1073/pnas.1821594116
https://doi.org/10.1073/pnas.1821594116
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.02903
https://doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1109/sfcs.1986.25

List of Figures

2.1 Connection between Artificial intelligence, machine learning and deep learning [29] 15
2.2 Schematic representation of a perceptron . 18
2.3 Step function . 19
2.4 A multi-layer perceptron in comparison to a deep neural network, inspired by [107] 20
2.5 ReLU function . 21
2.6 An example of a convolution. 24
2.7 An example of max–pooling with a pool size of (2, 2). 25
2.8 Keras software and hardware stack [29]. 26
2.9 Diffie-Hellmann Key Exchange . 29
2.10 “The Simplest Protocol for Oblivious Transfer”[32] 30

3.1 Data Parallelism . 36
3.2 Two approaches to data splitting. Left: instance shards. Right: feature shards. [11] 36
3.3 Model Parallelism . 37
3.4 Pipeline Parallelism . 38
3.5 Basic split learning setup showing distribution of layers across node and server . 39
3.6 A schematic illustration of a split learning round with a single node. 40
3.7 A schematic illustration of one federated optimization round. 42

4.1 The distribution strategy when one peer sends the updated weights to all others. . 44
4.2 A schematic illustration of peer-to-peer learning with four peers. 45
4.3 A schematic illustration of the abstract processes of FO with four peers. 46

6.1 Example digits from the MNIST dataset . 56
6.2 The applied model . 57
6.3 Dataset distribution for experiment M1. 57
6.4 Test accuracy over communication rounds for decentralized SL of experiment M1. 58
6.5 Test accuracy over communication rounds for decentralized FO of experiment M1. 58
6.6 Dataset distribution for experiment M2. 59
6.7 Test accuracy over communication rounds for decentralized SL of experiment M2. 60
6.8 Test accuracy over communication rounds forr decentralized FO of experiment M2. 60
6.9 Dataset distribution for experiment M5. 61
6.10 Test accuracy over communication rounds for decentralized SL of experiment M5. 62
6.11 Test accuracy over communication rounds for decentralized FO of experiment M5. 62
6.12 Upscaled example images from the CIFAR-10 dataset 64
6.13 The applied model . 64
6.14 Dataset distribution for experiment C1. 65
6.15 Test accuracy over communication rounds for decentralized SL of experiment C1. 65
6.16 Test accuracy over communication rounds for decentralized FO of experiment C1. 66
6.17 Dataset distribution for experiment C2. 67

85

List of Figures

6.18 Test accuracy over communication rounds for decentralized SL of experiment C2. 67
6.19 Test accuracy over communication rounds for decentralized FO of experiment C2. 68
6.20 Test accuracy over communication rounds for decentralized SL of experiment C3. 68
6.21 Test accuracy over communication rounds for decentralized FO of experiment C3. 69
6.22 Example images from the Imagenette dataset 70
6.23 Residual learning [60] . 70
6.24 ResNet50 identity block [38] . 71
6.25 ResNet50 convolution block [38] . 71
6.26 ResNet50 [38] . 72
6.27 Test accuracy over communication rounds for decentralized SL of experiment I1. 72
6.28 Test accuracy over communication rounds for decentralized FO of experiment I1. 73
6.29 Test accuracy over communication rounds for decentralized FO of experiment I2. 74

A.1 Dataset distribution for experiment M3 . 93
A.2 Dataset distribution for experiment M4. 94

86

List of Tables

2.1 Truth table of the AND function and the garbled version. 30

4.1 Comparison of distributed learning, federated optimization and split learning . . 43

6.1 Comparison of the required effort of experiment M1, based on median results. . . 59
6.2 Comparison of the required effort of experiment M2, based on median results. . . 61
6.3 Comparison of the required effort of experiment M2, based on median results. . . 63
6.4 Comparison of the required effort of experiment C1, based on median results. . . 66

A.1 Comparison of the results experiment M3. 93
A.2 Comparison of the results experiment M4. 94

87

List of Listings

5.1 The implementation of Divide in Python . 51
5.2 Implementation for dividing the layer weights in Python 53
5.3 Minimized version of divide_layer . 53

89

List of Algorithms

2.1 Train a perceptron . 19
3.1 FederatedAveraging. The nodes are indexed by :; � is the local minibatch size;

� is the number of local epochs; [is the learning rate. [81] 41
4.1 A MPC version for averaging values . 48

A Further experiments on MNIST

In this section, further experiments are shown. The results do not provide any additional insights,
but the data distribution is slightly different from those already shown.

A.1 Experiment M3: non-IID (3%)

As shown in Figure A.1, each party has two main digits, of which they have by far the most training
images. Of the remaining digits, each party has 88% of its main digits‘ training data and 3% of
the remaining digits‘ training data. Each experiment was performed five times. The corresponding
results are summarized in Table A.1.

0 1 2 3 4 5 6 7 8 9
0

2,000

4,000

6,000

5104 51925192 5456
5104 47525192 53685192

5896#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure A.1: Dataset distribution for experiment M3

approach best result worst result median
SL 258 410 340
FO 164 231 198

Table A.1: Comparison of the results experiment M3.

A.2 Experiment M4: non-IID (1%)

As shown in Figure A.2, each party has two main digits, of which they have by far the most training
images. Of the remaining digits, each party has 96% of its main digits‘ training data and 1% of
the remaining digits‘ training data. Each experiment was performed five times. The corresponding
results are summarized in Table A.2.

0 1 2 3 4 5 6 7 8 9

0

2,000

4,000

6,000

5568 56645664 59525568 51845664 58565664
6432

#i
m

ag
es

Party 1 Party 2 Party 3 Party 4 Party 5

Figure A.2: Dataset distribution for experiment M4.

approach best result worst result median
SL 370 478 387
FO 145 233 184

Table A.2: Comparison of the results experiment M4.

B Python implementations

B.1 Source code of the experiments

transform_mnist.py – Transform MNIST dataset to NumPy array:
1 import os

2 import struct

3 import numpy as np

4

5 path='./work_data'

6 train_labels_path = os.path.join(path, 'train-labels-idx1-ubyte')

7 train_images_path = os.path.join(path, 'train-images-idx3-ubyte')

8 test_labels_path = os.path.join(path, 't10k-labels-idx1-ubyte')

9 test_images_path = os.path.join(path, 't10k-images-idx3-ubyte')

10

11 with open(train_labels_path, 'rb') as lbpath:

12 magic, n = struct.unpack('>II', lbpath.read(8))

13 y_train = np.fromfile(lbpath, dtype=np.uint8)

14

15 with open(train_images_path, 'rb') as imgpath:

16 magic, num, rows, cols = struct.unpack(">IIII", imgpath.read(16))

17 x_train = np.fromfile(imgpath, dtype=np.uint8).reshape(len(y_train), 784)

18

19 with open(test_labels_path, 'rb') as lbpath:

20 magic, n = struct.unpack('>II', lbpath.read(8))

21 y_test = np.fromfile(lbpath, dtype=np.uint8)

22

23 with open(test_images_path, 'rb') as imgpath:

24 magic, num, rows, cols = struct.unpack(">IIII", imgpath.read(16))

25 x_test = np.fromfile(imgpath, dtype=np.uint8).reshape(len(y_test), 784)

26

27 np.savez('./work_data/mnist.npz', x_train=x_train, y_train=y_train, x_test=x_test,

y_test=y_test)

transform_cifar10.py – Transform CIFAR-10 dataset to NumPy array.
1 import os

2 import numpy as np

3

4 # https://www.cs.toronto.edu/~kriz/cifar.html

5 def unpickle(file):

6 import pickle

7 with open(file, 'rb') as fo:

8 dict = pickle.load(fo, encoding='bytes')

9 return dict

10

11

12 path = './work_data/cifar-10-batches-py'

13 train = [unpickle(os.path.join(path, f'data_batch_{i}')) for i in range(1, 6)]

14

15 labels = train[0][b'labels'] + train[1][b'labels'] + train[2][b'labels'] + train[3][b'labels']

+ train[4][b'labels']

16 data = np.concatenate([train[0][b'data'], train[1][b'data'], train[2][b'data'], train[3][b'

data'], train[4][b'data']])

17

18 test = unpickle(os.path.join(path, 'test_batch'))

19

20 np.savez('./work_data/cifar10.npz', x_train=data, y_train=labels, x_test=test[b'data'], y_test

=test[b'labels'])

common.py – Common functions for MNIST and CIFAR-10:
1 import matplotlib.pyplot as plt

2 import numpy as np

3 import pandas as pd

4 import tensorflow as tf

5 from tensorflow.keras import layers

6 from tensorflow.keras import models

7

8 def setup_tensorflow():

9 # https://github.com/tensorflow/tensorflow/issues/24496#issuecomment-592179648

10 gpus = tf.config.experimental.list_physical_devices('GPU')

11 if gpus:

12 try:

13 for gpu in gpus:

14 tf.config.experimental.set_memory_growth(gpu, True)

15 logical_gpus = tf.config.experimental.list_logical_devices('GPU')

16 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

17 except RuntimeError as e:

18 print(e)

19

20

21 def get_dataset_iid(party_count, seed, dataset='mnist'):

22 if dataset == 'mnist':

23 (train_images, train_labels), (test_images, test_labels) = load_mnist()

24 elif dataset == 'cifar10':

25 (train_images, train_labels), (test_images, test_labels) = load_cifar10()

26

27 # Shuffle images and labels with same permutation

28 rnd_state = np.random.RandomState(seed=seed)

29 permutation = rnd_state.permutation(len(train_images))

30 train_images1 = train_images[permutation]

31 train_labels1 = train_labels[permutation]

32 data = np.split(train_images1, party_count)

33 labels = np.split(train_labels1, party_count)

34

35 # Convert labels to categorical to be conform with the produced model results

36 test_labels = tf.keras.utils.to_categorical(test_labels)

37 for i in range(0, len(labels)):

38 labels[i] = tf.keras.utils.to_categorical(labels[i])

39

40 return (data, labels), (test_images, test_labels)

41

42

43 def get_dataset_non_iid(party_count, min_percentage, dataset='mnist', input_shape=[1, 28, 28,

1]):

44 if dataset == 'mnist':

45 (train_images, train_labels), (test_images, test_labels) = load_mnist()

46 elif dataset == 'cifar10':

47 (train_images, train_labels), (test_images, test_labels) = load_cifar10()

48

49 data = []

50 labels = []

51

52 main_classes_per_party = 10 // party_count

53 main_class_percentage = 100 - ((party_count - 1) * min_percentage)

54

55 begin_classes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

56 max_classes = [len(train_images[train_labels == 0])

57 , len(train_images[train_labels == 1])

58 , len(train_images[train_labels == 2])

59 , len(train_images[train_labels == 3])

60 , len(train_images[train_labels == 4])

61 , len(train_images[train_labels == 5])

62 , len(train_images[train_labels == 6])

63 , len(train_images[train_labels == 7])

64 , len(train_images[train_labels == 8])

65 , len(train_images[train_labels == 9])

66]

67 for party in range(party_count):

68 dataset = np.empty(input_shape)

69 labelset = []

70 for f in range(10):

71 if (f >= party * main_classes_per_party) and (f < (party + 1) * main_classes_per_party):

72 end_class = begin_classes[f] + main_class_percentage

73 else:

74 end_class = begin_classes[f] + min_percentage

75 dataset = np.concatenate((dataset, train_images[train_labels == f][max_classes[f] //

100 * begin_classes[f]:max_classes[f] // 100 * end_class]))

76 labelset = np.concatenate((labelset, train_labels[train_labels == f][max_classes[f] //

100 * begin_classes[f]:max_classes[f] // 100 * end_class]))

77 begin_classes[f] = end_class

78 data.append(dataset[1:])

79 labels.append(labelset)

80

81 # Convert labels to categorical to be conform with the produced model results

82 test_labels = tf.keras.utils.to_categorical(test_labels)

83 for i in range(0, len(labels)):

84 labels[i] = tf.keras.utils.to_categorical(labels[i], num_classes=10)

85

86 return (data, labels), (test_images, test_labels)

87

88

89 def get_mnist_model(input_shape):

90 model = models.Sequential()

91 model.add(layers.Conv2D(32, (5, 5), activation='relu', padding='same',

92 input_shape=input_shape))

93 model.add(layers.MaxPooling2D((2, 2)))

94 model.add(layers.Conv2D(64, (5, 5), activation='relu', padding='same'))

95 model.add(layers.MaxPooling2D((2, 2)))

96

97 model.add(layers.Flatten())

98 model.add(layers.Dense(512, activation='relu'))

99 model.add(layers.Dense(10, activation='softmax'))

100 model.summary()

101 return model

102

103

104 def get_cifar10_model(input_shape):

105 model = models.Sequential()

106 model.add(layers.Conv2D(32, (3, 3), padding='same', input_shape=input_shape))

107 model.add(layers.Activation('relu'))

108 model.add(layers.Conv2D(32, (3, 3)))

109 model.add(layers.Activation('relu'))

110 model.add(layers.MaxPooling2D(pool_size=(2, 2)))

111 model.add(layers.Dropout(0.25))

112

113 model.add(layers.Conv2D(64, (3, 3), padding='same'))

114 model.add(layers.Activation('relu'))

115 model.add(layers.Conv2D(64, (3, 3)))

116 model.add(layers.Activation('relu'))

117 model.add(layers.MaxPooling2D(pool_size=(2, 2)))

118 model.add(layers.Dropout(0.25))

119

120 model.add(layers.Flatten())

121 model.add(layers.Dense(512))

122 model.add(layers.Activation('relu'))

123 model.add(layers.Dropout(0.5))

124 model.add(layers.Dense(10))

125 model.add(layers.Activation('softmax'))

126 return model

127

128

129 def load_mnist():

130 with np.load('../work_data/mnist.npz') as f:

131 x_train, y_train = f['x_train'], f['y_train']

132 x_test, y_test = f['x_test'], f['y_test']

133 x_train = x_train.reshape(60000, 28, 28, 1)

134 x_train = x_train.astype('float32') / 255

135 x_test = x_test.reshape(10000, 28, 28, 1)

136 x_test = x_test.astype('float32') / 255

137

138 return (x_train, y_train), (x_test, y_test)

139

140

141 def load_cifar10():

142 with np.load('../work_data/cifar10.npz') as f:

143 x_train, y_train = f['x_train'], f['y_train']

144 x_test, y_test = f['x_test'], f['y_test']

145 x_train = x_train.reshape(50000, 32, 32, 3)

146 x_train = x_train.astype('float32') / 255

147 x_test = x_test.reshape(10000, 32, 32, 3)

148 x_test = x_test.astype('float32') / 255

149

150 return (x_train, y_train), (x_test, y_test)

decentralized_sl.py – Decentralized SL for MNIST and CIFAR-10:
1 import tensorflow as tf

2

3 import lib.common as common

4

5 PARAMS = {'learning_rate': 0.0001,

6 'seed': 1234567890,

7 'party_count': 5,

8 'epochs': 1,

9 'batch_size': 64,

10 'validation_split': 0.2,

11 'distribution': 'non-iid',

12 'optimizer': 'adam',

13 'loss': 'categorical_crossentropy',

14 'target_acc': 0.70,

15 'max_round_count': 125,

16 'min_percentage': 5,

17 'dataset': 'cifar10',

18 'input_shape': [1,32,32,3]

19 }

20

21 common.setup_tensorflow()

22

23 if PARAMS['distribution'] == 'non-iid':

24 (train_x, train_y), (validate_x, validate_y) =

common.get_dataset_non_iid(PARAMS['party_count'], PARAMS['min_percentage'],

PARAMS['dataset'], PARAMS['input_shape'])

25 else:

26 (train_x, train_y), (validate_x, validate_y) =

common.get_dataset_iid(PARAMS['party_count'], PARAMS['seed'], PARAMS['dataset'])

27

28 for _ in range(5):

29 if PARAMS['dataset'] == 'mnist':

30 model = common.get_mnist_model(PARAMS['input_shape'])

31 elif:

32 model = common.get_cifar10_model(PARAMS['input_shape'])

33

34 model.compile(optimizer=tf.keras.optimizers.Adam(PARAMS['learning_rate']),

35 loss=PARAMS['loss'],

36 metrics=['acc'])

37

38 acc = 0

39 rounds = 0

40 while acc < PARAMS['target_acc'] and rounds < PARAMS['max_round_count']:

41 for j in range(PARAMS['party_count']):

42 train_images = train_x[j]

43 train_labels = train_y[j]

44 # MemoryLeak on GPU when using validation_split as model.fit-parameter

45 if 0 < PARAMS['validation_split'] < 1:

46 split_at = int(len(train_images[0]) * (1 - PARAMS['validation_split']))

47 (train_images, val_images) = (train_images[split_at:], train_images[:split_at])

48 (train_labels, val_labels) = (train_labels[split_at:], train_labels[:split_at])

49

50 model.fit(train_images,

51 train_labels,

52 batch_size=PARAMS['batch_size'],

53 epochs=PARAMS['epochs'],

54 validation_data=(val_images, val_labels),

55 shuffle=True)

56 eval_history = model.evaluate(validate_x, validate_y)

57 print(f'Evaluation loss: {eval_history[0]}')

58 print(f'Evaluation acc: {eval_history[1]}')

59 acc = eval_history[1]

60 if acc >= PARAMS['target_acc']:

61 break

62 rounds = rounds + 1

63 print(f'round count: {rounds}')

decentralized_fo.py – Decentralized FO for MNIST and CIFAR-10:
1 import numpy as np

2 import tensorflow as tf

3 from tensorflow.keras import models

4 from tensorflow.keras.backend import clear_session

5 from tensorflow.keras.callbacks import Callback

6

7 import lib.common as common

8

9 PARAMS = {'learning_rate': 0.0001,

10 'seed': 1234567890,

11 'party_count': 5,

12 'epochs': 1,

13 'batch_size': 64,

14 'validation_split': 0.2,

15 'distribution': 'non-iid',

16 'optimizer': 'adam',

17 'loss': 'categorical_crossentropy',

18 'target_acc': 0.70,

19 'max_round_count': 500,

20 'min_percentage': 5,

21 'dataset': 'cifar10',

22 'input_shape': [1,32,32,3]

23 }

24

25 common.setup_tensorflow()

26

27 if PARAMS['distribution'] == 'non-iid':

28 (train_x, train_y), (validate_x, validate_y) =

common.get_dataset_non_iid(PARAMS['party_count'], PARAMS['min_percentage'],

PARAMS['dataset'], PARAMS['input_shape'])

29 else:

30 (train_x, train_y), (validate_x, validate_y) =

common.get_dataset_iid(PARAMS['party_count'], PARAMS['seed'], PARAMS['dataset'])

31

32

33 for _ in range(5):

34 if PARAMS['dataset'] == 'mnist':

35 shared_model = common.get_mnist_model(PARAMS['input_shape'])

36 elif:

37 shared_model = common.get_cifar10_model(PARAMS['input_shape'])

38 shared_model.compile(optimizer=tf.keras.optimizers.Adam(PARAMS['learning_rate']),

39 loss=PARAMS['loss'],

40 metrics=['acc'])

41 shared_model.save("shared_model.h5")

42

43 acc = 0

44 rounds = 0

45 while acc < PARAMS['target_acc'] and rounds < PARAMS['max_round_count']:

46 # Initialize all_models

47 all_models = []

48 for j in range(PARAMS['party_count']):

49 all_models.append(models.load_model("shared_model.h5"))

50

51 for j in range(PARAMS['party_count']):

52 model = all_models[j]

53 train_images = train_x[j]

54 train_labels = train_y[j]

55

56 # MemoryLeak on GPU when using validation_split as model.fit-parameter

57 if 0 < PARAMS['validation_split'] < 1:

58 split_at = int(len(train_images[0]) * (1 - PARAMS['validation_split']))

59 (train_images, val_images) = (train_images[split_at:], train_images[:split_at])

60 (train_labels, val_labels) = (train_labels[split_at:], train_labels[:split_at])

61

62 model.fit(train_images,

63 train_labels,

64 batch_size=PARAMS['batch_size'],

65 epochs=PARAMS['epochs'],

66 validation_data=(val_images, val_labels),

67 shuffle=True)

68 eval_history = model.evaluate(validate_x, validate_y)

69 print(f'Evaluation loss (Set {j}): {eval_history[0]}')

70 print(f'Evaluation acc (Set {j}): {eval_history[1]}')

71

72 # update shared model

73 for idx, layer in enumerate(shared_model.layers):

74 weights = np.array([all_models[0].layers[idx].get_weights(),

75 all_models[1].layers[idx].get_weights(),

all_models[2].layers[idx].get_weights(), all_models[3].layers[idx].get_weights(),

all_models[4].layers[idx].get_weights()

76])

77 means = weights.mean(axis=0)

78 layer.set_weights(means)

79 eval_history = shared_model.evaluate(validate_x, validate_y)

80 print(f'Evaluation loss (common model): {eval_history[0]}')

81 print(f'Evaluation acc (common model): {eval_history[1]}')

82 acc = eval_history[1]

83 shared_model.save("shared_model.h5")

84 clear_session()

85 rounds = rounds + 1

86 print(f'round count {rounds}')

decentralized_sl_imagenette.py – Decentralized SL for Imagenette:
1 import multiprocessing

2 from multiprocessing import Pipe

3

4 import tensorflow as tf

5 import tensorflow_datasets as tfds

6 from numba import cuda

7 from tensorflow.keras import models

8 from tensorflow.keras.backend import clear_session

9 from tensorflow.keras.callbacks import Callback

10

11 import lib.common as common

12

13

14 PARAMS = {'learning_rate': 0.001,

15 'epochs': 1,

16 'batch_size': 64,

17 'seed': 1234567890,

18 'party_count': 5,

19 'min_percentage': 0,

20 'max_round_count': 200,

21 'distribution': 'iid',

22 'optimizer': 'adam',

23 'loss': 'categorical_crossentropy'

24 }

25

26

27 def load_dataset(batch_size, seed, start=0, end=100):

28 train, val = tfds.load('imagenette/160px-v2',

29 split=[f'train[{start}%:{end}%]', 'validation'],

30 as_supervised=True,

31 shuffle_files=True,

32 read_config=tfds.ReadConfig(shuffle_seed=seed)

33)

34

35 train = train.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \

36 .batch(batch_size) \

37 .prefetch(1)

38 val = val.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \

39 .batch(batch_size) \

40 .prefetch(1)

41 return train, val

42

43

44 def load_validate(batch_size):

45 val = tfds.load('imagenette/160px-v2', split=['validation'], as_supervised=True)

46 return val[0].map(normalize_img,

47 num_parallel_calls=tf.data.experimental.AUTOTUNE) \

48 .batch(batch_size) \

49 .prefetch(1)

50

51

52 def normalize_img(image, label):

53 return tf.keras.applications.resnet.preprocess_input(tf.image.resize(image, (224, 224))),

54 tf.one_hot(tf.cast(label, tf.int32), 10)

55

56

57 def get_model():

58 inputs = tf.keras.Input(shape=(224, 224, 3))

59 model = tf.keras.applications.ResNet50(weights=None, include_top=False)(inputs)

60 model = tf.keras.layers.GlobalAveragePooling2D()(model)

61 outputs = tf.keras.layers.Dense(10, activation='softmax')(model)

62 model = tf.keras.Model(inputs, outputs)

63 return model

64

65

66 def train(peer, round, conn):

67 common.setup_tensorflow()

68 train, validate = load_dataset(PARAMS['batch_size'],

69 PARAMS['seed'],

70 start=(100 // PARAMS['party_count']) * peer,

71 end=(100 // PARAMS['party_count']) * (peer + 1)

72)

73 model = models.load_model(f'shared_model.h5')

74 model.fit(train, batch_size=PARAMS['batch_size'], epochs=PARAMS['epochs'])

75 eval_history = model.evaluate(validate)

76 print(f'Evaluation loss: {eval_history[0]}')

77 print(f'Evaluation acc: {eval_history[1]}')

78 conn.send(eval_history[1])

79 conn.close()

80 model.save('shared_model.h5')

81 clear_session()

82 cuda.close()

83

84

85 def initialize_model():

86 common.setup_tensorflow()

87 shared_model = get_model()

88 shared_model.compile(optimizer=PARAMS['optimizer'],

89 loss=PARAMS['loss'],

90 metrics=['acc']

91)

92 model.save('shared_model.h5')

93 clear_session()

94 cuda.close()

95

96

97 def is_finished(acc, acc_old, rounds):

98 return acc < 0.75 and

99 abs(acc - acc_old) > 0.000001 and

100 rounds < PARAMS['max_round_count']

101

102

103 #

104 # # Train

105 for no_exp in range(1):

106 p_init = multiprocessing.Process(target=initialize_model)

107 p_init.start()

108 p_init.join()

109 acc = 0

110 acc_old = -1

111 rounds = 0

112 while is_finished(acc, acc_old, rounds):

113 for j in range(PARAMS['party_count']):

114 print("#####\nSet:", j)

115 # train "derived" models

116 parent_conn, child_conn = Pipe()

117 p_train = multiprocessing.Process(target=train, args=(j, rounds, child_conn))

118 p_train.start()

119 acc_old = acc

120 acc = parent_conn.recv()

121 p_train.join()

122 if is_finished(acc, acc_old, rounds):

123 break

124 rounds = rounds + 1

125 print(f'round count: {rounds}')

126 print('cancelled: {abs(acc - acc_old) <= 0.000001}')

decentralized_fo_imagenette.py – Decentralized FO for Imagenette:
1 import multiprocessing

2 from multiprocessing import Pipe

3

4 import neptune

5 import numpy as np

6 import tensorflow as tf

7 import tensorflow_datasets as tfds

8 from numba import cuda

9 from tensorflow.keras import models

10 from tensorflow.keras.backend import clear_session

11 from tensorflow.keras.callbacks import Callback

12

13 import lib.common as common

14

15

16 PARAMS = {'learning_rate': 0.001,

17 'epochs': 1,

18 'batch_size': 32,

19 'seed': 1234567890,

20 'party_count': 5,

21 'min_percentage': 1,

22 'max_round_count': 200,

23 'distribution': 'non-iid',

24 'optimizer': 'adam',

25 'loss': 'categorical_crossentropy'

26 }

27

28

29 def get_dataset_disjunct(party, batch_size, validation_split, percentage):

30 datagen = tf.keras.preprocessing.image.ImageDataGenerator(validation_split=validation_split,

31 preprocessing_function=tf.keras.applications.resnet.preprocess_input)

32 if percentage == 0:

33 path = f'../work_data/imagenette/train/disjunct/{party}'

34 else:

35 path = f'../work_data/imagenette/train/{percentage}_percent/{party}'

36 return datagen.flow_from_directory(path, target_size=(224, 224),

37 batch_size=batch_size, seed=PARAMS['seed'], shuffle=False)

38

39 def get_validation(batch_size):

40 datagen = tf.keras.preprocessing.image.ImageDataGenerator(

41 preprocessing_function=tf.keras.applications.resnet.preprocess_input)

42 return datagen.flow_from_directory(f'../work_data/imagenette/val',

43 target_size=(224, 224),

44 batch_size=batch_size,

45 seed=PARAMS['seed'],

46 shuffle=False)

47

48

49 def load_dataset(batch_size, seed, start=0, end=100):

50 train, val = tfds.load('imagenette/160px-v2',

51 split=[f'train[{start}%:{end}%]', 'validation'],

52 as_supervised=True,

53 shuffle_files=True,

54 read_config=tfds.ReadConfig(shuffle_seed=seed)

55)

56 train = train.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \

57 .batch(batch_size) \

58 .prefetch(1)

59

60 val = val.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \

61 .batch(batch_size) \

62 .prefetch(1)

63 return train, val

64

65

66 def load_validate(batch_size):

67 val = tfds.load('imagenette/160px-v2', split=['validation'], as_supervised=True)

68 return val[0].map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \

69 .batch(batch_size)

70

71

72 def normalize_img(image, label):

73 return tf.keras.applications.resnet.preprocess_input(tf.image.resize(image, (224, 224))),

74 tf.one_hot(tf.cast(label, tf.int32), 10)

75

76

77 def get_model():

78 inputs = tf.keras.Input(shape=(224, 224, 3))

79 model = tf.keras.applications.ResNet50(weights=None, include_top=False)(inputs)

80 model = tf.keras.layers.GlobalAveragePooling2D()(model)

81 outputs = tf.keras.layers.Dense(10, activation='softmax')(model)

82 model = tf.keras.Model(inputs, outputs)

83 return model

84

85

86 def train(peer):

87 common.setup_tensorflow()

88 if PARAMS['distribution'] == 'non-iid':

89 train = get_dataset_disjunct(peer, PARAMS['batch_size'], 0.2, PARAMS['min_percentage'])

90 validate = get_validation(PARAMS['batch_size'])

91 else:

92 train, validate = load_dataset(PARAMS['batch_size'], PARAMS['seed'],

93 start=(100 // PARAMS['party_count']) * peer,

94 end=(100 // PARAMS['party_count']) * (peer + 1)

95)

96 model = models.load_model('shared_model.h5')

97 model.fit(train,

98 steps_per_epoch=train.samples / PARAMS['batch_size'],

99 batch_size=PARAMS['batch_size'],

100 epochs=PARAMS['epochs']

101)

102 eval_history = model.evaluate(validate, steps=validate.samples / PARAMS['batch_size'])

103 print(f'Evaluation loss (Set {peer}): {eval_history[0]}')

104 print(f'Evaluation acc (Set {peer}): {eval_history[1]}')

105 model.save(f'shared_model_{peer}.h5')

106 clear_session()

107 cuda.close()

108

109

110 def initialize_model():

111 common.setup_tensorflow()

112 shared_model = get_model()

113 shared_model.compile(optimizer=PARAMS['optimizer'],

114 loss=PARAMS['loss'],

115 metrics=['acc'])

116 shared_model.save('shared_model.h5')

117 clear_session()

118 cuda.close()

119

120

121 def update_model():

122 common.setup_tensorflow()

123 shared_model = models.load_model('shared_model.h5')

124 # Load all_models

125 all_models = []

126 for j in range(PARAMS['party_count']):

127 all_models.append(models.load_model(f'shared_model_{j}.h5'))

128 # update shared model

129 for idx, layer in enumerate(shared_model.layers):

130 weights = np.array([all_models[0].layers[idx].get_weights(),

131 all_models[1].layers[idx].get_weights(),

132 all_models[2].layers[idx].get_weights(),

133 all_models[3].layers[idx].get_weights(),

134 all_models[4].layers[idx].get_weights()

135])

136 means = weights.mean(axis=0)

137 layer.set_weights(means)

138 shared_model.save('shared_model.h5')

139 clear_session()

140

141

142 def validate(conn):

143 common.setup_tensorflow()

144 shared_model = models.load_model('shared_model.h5')

145 validate = get_validation(PARAMS['batch_size'])

146 eval_history = shared_model.evaluate(validate, steps=validate.samples /

PARAMS['batch_size'])

147 print(f'Evaluation acc (shared model): {eval_history[1]}')

148 conn.send(eval_history[1])

149 conn.close()

150 clear_session()

151

152

153 def is_not_finished(acc, acc_old, rounds):

154 return acc < 0.75 and (abs(acc - acc_old) > 0.000001) and rounds < PARAMS['max_round_count']

155

156

157 #

158 # # Train

159 for no_exp in range(2):

160 p_init = multiprocessing.Process(target=initialize_model)

161 p_init.start()

162 p_init.join()

163 acc = 0

164 acc_old = -1

165 rounds = 0

166 while is_not_finished(acc, acc_old, rounds):

167 print("\n\nRound:", rounds)

168

169 # train "derived" models

170 for j in range(PARAMS['party_count']):

171 print("#####\nSet:", j)

172 p_train = multiprocessing.Process(target=train, args=(j,))

173 p_train.start()

174 p_train.join()

175 p_update = multiprocessing.Process(target=update_model)

176 p_update.start()

177 p_update.join()

178 parent_conn, child_conn = Pipe()

179 p_update = multiprocessing.Process(target=validate, args=(child_conn,))

180 p_update.start()

181 acc_old = acc

182 acc = parent_conn.recv()

183 p_update.join()

184 rounds = rounds + 1

185 exp.log_text('round count', str(rounds))

B.2 Python implementation of secure decentralized federated
optimization (SecAvg)

initialize_common_model.py – Initialize common model for decentralized FO:
1 import lib.common as common

2

3 common_model = common.get_model()

4 common_model.compile(optimizer='adam, loss='categorical_crossentropy', metrics=['acc'])

5 common_model.save("init_model.h5")

decentralized_fo.py – Decentralized FO with SecAvg:
1 import numpy as np

2 import argparse

3 import os.path

4 import time

5 import logging

6

7 import lib.common as common

8 from tensorflow.keras import models

9 from tensorflow.keras.backend import clear_session

10

11 logging.getLogger('tensorflow').setLevel(logging.ERROR)

12

13

14 parser = argparse.ArgumentParser(description='decentralized federated learning.')

15 parser.add_argument('peers', type=int, help='The total count of peers.')

16 parser.add_argument('position', type=int, help='The position of the peer.')

17 parser.add_argument('-r','--rounds', dest='rounds', type=int, help='Number of learning rounds.

', default=5)

18

19 args = parser.parse_args()

20

21

22 def divide(weights, peers, rnd_gen):

23 rn = [rnd_gen.integers(1, 5, peers) for _ in range(len(weights))]

24 for i in range(len(rn)):

25 rn[i] = rn[i] / rn[i].sum()

26 rn = np.array(rn).transpose()

27 return rn * weights

28

29

30 def divide_layer(layer_weights, peers, rnd_gen=np.random.default_rng(time.time_ns())):

31 w = [divide(np.ravel(weight), peers, rnd_gen) for weight in layer_weights]

32 final_weights = [layer_weights for _ in range(peers)]

33 for p in range(peers):

34 for i in range(len(layer_weights)):

35 final_weights[p][i] = w[i][p].reshape(layer_weights[i].shape)

36 return final_weights

37

38

39 PARAMS = {'learning_rate': 0.001,

40 'epochs': 1,

41 'batch_size': 64,

42 'validation_split': 0.2,

43 'seed': 1234567890,

44 'min_percentage': 0,

45 'max_round_count': 3000,

46 'distribution': 'non-iid',

47 'optimizer': 'adam',

48 'loss': 'categorical_crossentropy'

49 }

50

51 if PARAMS['distribution'] == 'non-iid':

52 (train_x, train_y), (validate_x, validate_y) = common.get_dataset_non_iid(args.peers,

PARAMS['min_percentage'])

53 else:

54 (train_x, train_y), (validate_x, validate_y) = common.get_dataset_iid(args.peers, PARAMS['

seed'])

55

56 common.setup_tensorflow()

57

58 # Train

59 for round_count in range(args.rounds):

60 if round_count == 0:

61 model = models.load_model("init_model.h5")

62 else:

63 model = models.load_model(f"{round_count - 1}_avg_model_{args.position}.h5")

64

65 history = model.fit(train_x[args.position], train_y[args.position], batch_size=PARAMS['

batch_size'],

66 epochs=PARAMS['epochs'], validation_split=PARAMS['validation_split'])

67 eval_history = model.evaluate(validate_x, validate_y)

68 print(f"model (loss/acc): {eval_history[0]}/{eval_history[1]}")

69

70 part_models = [models.clone_model(model) for p in range(args.peers)]

71

72 for idx, layer in enumerate(model.layers):

73 par_wt = np.array(divide_layer(np.array(layer.get_weights()), args.peers))

74 for j in range(args.peers):

75 part_models[j].layers[idx].set_weights(par_wt[j])

76

77 for j in range(args.peers):

78 part_models[j].save(f"{round_count}_part_model_{args.position}_{j}.h5")

79

80 corresponding_files_present = False

81 while not corresponding_files_present:

82 print("Checking for present …files")

83 corresponding_files_present = True

84 for j in range(args.peers):

85 if not os.path.isfile(f"{round_count}_part_model_{j}_{args.position}.h5"):

86 corresponding_files_present = False

87 if not corresponding_files_present:

88 time.sleep(5)

89

90 part_models = [models.load_model(f"{round_count}_part_model_{p}_{args.position}.h5") for p

in range(args.peers)]

91

92 part_avg_model = models.clone_model(model)

93 for idx, layer in enumerate(part_avg_model.layers):

94 weights = [part_models[p].layers[idx].get_weights() for p in range(args.peers)]

95 layer.set_weights(np.array(weights).mean(axis=0))

96

97 part_avg_model.save(f"{round_count}_part_avg_model_{args.position}.h5")

98

99 corresponding_files_present = False

100 while not corresponding_files_present:

101 print("Checking for present avg …files")

102 corresponding_files_present = True

103 for j in range(args.peers):

104 if not os.path.isfile(f"{round_count}_part_avg_model_{j}.h5"):

105 corresponding_files_present = False

106 if not corresponding_files_present:

107 time.sleep(10)

108

109 avg_models = [models.load_model(f"{round_count}_part_avg_model_{p}.h5") for p in range(

args.peers)]

110

111 avg_model = models.clone_model(model)

112 for idx, layer in enumerate(avg_model.layers):

113 weights = [avg_models[p].layers[idx].get_weights() for p in range(args.peers)]

114 layer.set_weights(np.array(weights).sum(axis=0))

115

116 avg_model.compile(optimizer=PARAMS['optimizer'], loss=PARAMS['loss'], metrics=['acc'])

117 eval_history = avg_model.evaluate(validate_x, validate_y)

118 print(f"avg model (loss/acc): {eval_history[0]}/{eval_history[1]}")

119 avg_model.save(f"{round_count}_avg_model_{args.position}.h5")

120

121 clear_session()

	1 Introduction
	1.1 Structure

	2 Basics
	2.1 Artificial intelligence and machine learning
	2.2 Secure multi-party computation

	3 Related Work
	3.1 Distributed machine learning
	3.2 Split learning
	3.3 Federated optimization

	4 Analysis & Design
	4.1 Decentralized communication approach for split learning
	4.2 Decentralized communication approach for federated optimization

	5 Implementation
	6 Experiments
	6.1 Experiments on MNIST
	6.2 Experiments on CIFAR-10
	6.3 Experiments on Imagenette

	7 Conclusion and Outlook
	Bibliography
	A Further experiments on MNIST
	A.1 Experiment M3: non-iid (3%)
	A.2 Experiment M4: non-iid (1%)

	B Python implementations
	B.1 Source code of the experiments
	B.2 Python implementation of secure decentralized federated optimization (SecAvg)

